CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay
Guest Lecture by : R. Govind

Sep 04, 2023
Lecture 12 - Basic Mathematical Structures
Chains and Antichains

Recap: Partial order relations

Last class we saw

- Partial orders: definition and examples
- Posets
- Graphical representation as Directed Acyclic Graphs

Definition

- A partial order is a relation which is reflexive, transitive and anti-symmetric.
- A total order is a partial order in which every pair of elements is comparable.
- A poset is a set S with a partial order $\preceq \subseteq S \times S$.

Recap: Partial order relations

Definition

- A partial order is a relation which is reflexive, transitive and anti-symmetric.
- A total order is a partial order in which every pair of elements is comparable.
- A poset is a set S with a partial order $\preceq \subseteq S \times S$.

Examples

- (\mathbb{Z}, \leq) : integers with the usual less than or equal to relation.
- $(\mathcal{P}(S), \subseteq)$: powerset of any set with the subset relation.
- $\left(\mathbb{Z}^{+}, \mid\right)$: positive integers with divisibility relation.

Recap: Partial order relations

Let $S=\{1,2,3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$. How does the graph of $(\mathcal{P}(S), \subseteq)$ look like?

Figure: Graph of a poset and its Hasse diagram

Minimal and maximal elements

Let (S, \preceq) be a poset.

- An element $a \in S$ is called minimal if, $b \preceq a$ implies $b=a$.
- An element $a \in S$ is called maximal if, $a \preceq b$ implies $a=b$.

Minimal and maximal elements

Let (S, \preceq) be a poset.

- An element $a \in S$ is called minimal if, $b \preceq a$ implies $b=a$.
- An element $a \in S$ is called maximal if, $a \preceq b$ implies $a=b$.

- Here, the poset has a minimal/maximal element

Minimal and maximal elements

Let (S, \preceq) be a poset.

- An element $a \in S$ is called minimal if, $b \preceq a$ implies $b=a$.
- An element $a \in S$ is called maximal if, $a \preceq b$ implies $a=b$.

- Here, the poset has a minimal/maximal element
- What are the minimal \& maximal elements in $\left(\mathbb{Z}^{+}, \mid\right)$.

Minimal and maximal elements

Let (S, \preceq) be a poset.

- An element $a \in S$ is called minimal if, $b \preceq a$ implies $b=a$.
- An element $a \in S$ is called maximal if, $a \preceq b$ implies $a=b$.

- Here, the poset has a minimal/maximal element
- What are the minimal \& maximal elements in $\left(\mathbb{Z}^{+}, \mid\right)$.
- Is there always a unique minimal/maximal element?

Minimal and maximal elements

Let (S, \preceq) be a poset.

- An element $a \in S$ is called minimal if, $b \preceq a$ implies $b=a$.
- An element $a \in S$ is called maximal if, $a \preceq b$ implies $a=b$.

- Here, the poset has a minimal/maximal element
- What are the minimal \& maximal elements in $\left(\mathbb{Z}^{+}, \mid\right)$.
- Is there always a unique minimal/maximal element?

Minimal and maximal elements

Let (S, \preceq) be a poset.

- An element $a \in S$ is called minimal if, $b \preceq a$ implies $b=a$.
- An element $a \in S$ is called maximal if, $a \preceq b$ implies $a=b$.

- Here, the poset has a minimal/maximal element
- What are the minimal \& maximal elements in $\left(\mathbb{Z}^{+}, \mid\right)$.
- Is there always a unique minimal/maximal element?
- What are the minimal element(s?) in $\left(\mathbb{Z}_{>1}, \mid\right)$.

Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.

Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.
Proof: Suppose that the poset has k elements.

Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.
Proof: Suppose that the poset has k elements.

- Choose x_{1} from the poset - either it is minimal, or there is some $x_{2} \neq x_{1}$ s.t. $x_{2} \preceq x_{1}$.

Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.
Proof: Suppose that the poset has k elements.

- Choose x_{1} from the poset - either it is minimal, or there is some $x_{2} \neq x_{1}$ s.t. $x_{2} \preceq x_{1}$.
- If x_{2} is minimal, we are done; otherwise there is some $x_{3} \neq x_{2}$ s.t. $x_{3} \preceq x_{2}$.

Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.
Proof: Suppose that the poset has k elements.

- Choose x_{1} from the poset - either it is minimal, or there is some $x_{2} \neq x_{1}$ s.t. $x_{2} \preceq x_{1}$.
- If x_{2} is minimal, we are done; otherwise there is some $x_{3} \neq x_{2}$ s.t. $x_{3} \preceq x_{2}$.
- Repeating this step $k+1$ times, we get

$$
x_{k+1} \preceq x_{k} \preceq \cdots \preceq x_{2} \preceq x_{1}
$$

Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.
Proof: Suppose that the poset has k elements.

- Choose x_{1} from the poset - either it is minimal, or there is some $x_{2} \neq x_{1}$ s.t. $x_{2} \preceq x_{1}$.
- If x_{2} is minimal, we are done; otherwise there is some $x_{3} \neq x_{2}$ s.t. $x_{3} \preceq x_{2}$.
- Repeating this step $k+1$ times, we get

$$
x_{k+1} \preceq x_{k} \preceq \cdots \preceq x_{2} \preceq x_{1}
$$

- Since size of poset is k, we must have $x_{j}=x_{i}, j<i$.

Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.
Proof: Suppose that the poset has k elements.

- Choose x_{1} from the poset - either it is minimal, or there is some $x_{2} \neq x_{1}$ s.t. $x_{2} \preceq x_{1}$.
- If x_{2} is minimal, we are done; otherwise there is some $x_{3} \neq x_{2}$ s.t. $x_{3} \preceq x_{2}$.
- Repeating this step $k+1$ times, we get

$$
x_{k+1} \preceq x_{k} \preceq \cdots x_{j} \preceq \cdots \preceq x_{i+1} \preceq x_{i} \preceq \cdots \preceq x_{2} \preceq x_{1}
$$

- Since size of poset is k, we must have $x_{j}=x_{i}, j<i$.

Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.
Proof: Suppose that the poset has k elements.

- Choose x_{1} from the poset - either it is minimal, or there is some $x_{2} \neq x_{1}$ s.t. $x_{2} \preceq x_{1}$.
- If x_{2} is minimal, we are done; otherwise there is some $x_{3} \neq x_{2}$ s.t. $x_{3} \preceq x_{2}$.
- Repeating this step $k+1$ times, we get

$$
x_{k+1} \preceq x_{k} \preceq \cdots x_{j} \preceq \cdots \preceq x_{i+1} \preceq x_{i} \preceq \cdots \preceq x_{2} \preceq x_{1}
$$

- Since size of poset is k, we must have $x_{j}=x_{i}, j<i$. We get $x_{j} \preceq x_{i+1}$ and $x_{i+1} \preceq x_{j}$ (violates anti-symmetry) Contradiction!

Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.
Proof: Suppose that the poset has k elements.

- Choose x_{1} from the poset - either it is minimal, or there is some $x_{2} \neq x_{1}$ s.t. $x_{2} \preceq x_{1}$.
- If x_{2} is minimal, we are done; otherwise there is some $x_{3} \neq x_{2}$ s.t. $x_{3} \preceq x_{2}$.
- Repeating this step $k+1$ times, we get

$$
x_{k+1} \preceq x_{k} \preceq \cdots x_{j} \preceq \cdots \preceq x_{i+1} \preceq x_{i} \preceq \cdots \preceq x_{2} \preceq x_{1}
$$

- Since size of poset is k, we must have $x_{j}=x_{i}, j<i$. We get $x_{j} \preceq x_{i+1}$ and $x_{i+1} \preceq x_{j}$ (violates anti-symmetry) Contradiction!

Proof by induction?(H.W)

Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.
Proof: Suppose that the poset has k elements.

- Choose x_{1} from the poset - either it is minimal, or there is some $x_{2} \neq x_{1}$ s.t. $x_{2} \preceq x_{1}$.
- If x_{2} is minimal, we are done; otherwise there is some $x_{3} \neq x_{2}$ s.t. $x_{3} \preceq x_{2}$.
- Repeating this step $k+1$ times, we get

$$
x_{k+1} \preceq x_{k} \preceq \cdots x_{j} \preceq \cdots \preceq x_{i+1} \preceq x_{i} \preceq \cdots \preceq x_{2} \preceq x_{1}
$$

- Since size of poset is k, we must have $x_{j}=x_{i}, j<i$. We get $x_{j} \preceq x_{i+1}$ and $x_{i+1} \preceq x_{j}$ (violates anti-symmetry) Contradiction!

What about infinite posets?

Posets: Chains and Antichains

Let $S=\{1,2,3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

Posets: Chains and Antichains

Let $S=\{1,2,3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

- Subsets that are totally ordered?
- Subsets that are unordered?

Chains and Anti-chains

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- a chain if every pair of elements in B is related by \preceq.
- That is, $\forall a, b \in B$, we have $a \preceq b$ or $b \preceq a$ (or both).

Chains and Anti-chains

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- a chain if every pair of elements in B is related by \preceq.
- That is, $\forall a, b \in B$, we have $a \preceq b$ or $b \preceq a$ (or both).
- Thus, \preceq is a total order on B.

Chains and Anti-chains

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- a chain if every pair of elements in B is related by \preceq.
- That is, $\forall a, b \in B$, we have $a \preceq b$ or $b \preceq a$ (or both).
- Thus, \preceq is a total order on B.

Definition

Let (S, \preceq) be a poset. A subset $A \subseteq S$ is called

- an anti-chain if no two distinct elements of A are related to each other under \preceq.

Chains and Anti-chains

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- a chain if every pair of elements in B is related by \preceq.
- That is, $\forall a, b \in B$, we have $a \preceq b$ or $b \preceq a$ (or both).
- Thus, \preceq is a total order on B.

Definition

Let (S, \preceq) be a poset. A subset $A \subseteq S$ is called

- an anti-chain if no two distinct elements of A are related to each other under \preceq.
- That is, $\forall a, b \in A, a \neq b$, we have neither $a \preceq b$ nor $b \preceq a$.

Chains and Anti-chains: examples

- Let $S=\{1,2,3\}$.

Figure: Graph of poset ($\mathcal{P}(S), \subseteq)$ and its Hasse diagram

- What are the chains in this poset?

Chains and Anti-chains: examples

- Let $S=\{1,2,3\}$.

Figure: Graph of poset $(\mathcal{P}(S), \subseteq)$ and its Hasse diagram

- What are the chains in this poset?
- What are the anti-chains in this poset?

Chains and Anti-chains: examples

- Let $S=\{1,2,3\}$.

Figure: Graph of poset $(\mathcal{P}(S), \subseteq)$ and its Hasse diagram

- What are the chains in this poset?
- What are the anti-chains in this poset?
- Give an example of an infinite chain \& anti-chain in $\left(\mathbb{Z}^{+}, \mid\right)$.

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- Clearly, this shows the dependencies.

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- Clearly, this shows the dependencies.
- But when you cook you need a total order, right?

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- Clearly, this shows the dependencies.
- But when you cook you need a total order, right?
- Further, this total order must be consistent with the po.
- This is called a linearization or a topological sorting.

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_{t}) with a total order \preceq_{t} such that $x \preceq_{y}$ implies $x \preceq_{t} y$.

Theorem

Every finite poset has a topological sort.

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_{t}) with a total order \preceq_{t} such that $x \preceq_{y}$ implies $x \preceq_{t} y$.

Theorem

Every finite poset has a topological sort.
Proof: (H.W)

- Recall the lemma:
- Every finite non-empty poset has at least one minimal element (x is minimal if $\nexists y, y \preceq x$).
- Then, construct a (new) chain to complete the proof.

