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Recap: Partial order relations

Last class we saw
I Partial orders: definition and examples

I Posets

I Graphical representation as Directed Acyclic Graphs

Definition
I A partial order is a relation which is reflexive, transitive

and anti-symmetric.

I A total order is a partial order in which every pair of
elements is comparable.

I A poset is a set S with a partial order � ⊆ S × S.
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Recap: Partial order relations

Definition
I A partial order is a relation which is reflexive, transitive

and anti-symmetric.

I A total order is a partial order in which every pair of
elements is comparable.

I A poset is a set S with a partial order � ⊆ S × S.

Examples

I (Z,≤): integers with the usual less than or equal to
relation.

I (P(S),⊆): powerset of any set with the subset relation.

I (Z+, | ): positive integers with divisibility relation.
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Recap: Partial order relations

Let S = {1, 2, 3}. Recall the poset (P(S),⊆). How does the
graph of (P(S),⊆) look like?

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure: Graph of a poset and its Hasse diagram
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Minimal and maximal elements

Let (S,�) be a poset.

I An element a ∈ S is called minimal if, b � a implies b = a.

I An element a ∈ S is called maximal if, a � b implies a = b.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

I Here, the poset has a minimal/maximal element

I What are the minimal & maximal elements in (Z+, |).
I Is there always a unique minimal/maximal element?
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Minimal and maximal elements

Let (S,�) be a poset.

I An element a ∈ S is called minimal if, b � a implies b = a.

I An element a ∈ S is called maximal if, a � b implies a = b.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

I Here, the poset has a minimal/maximal element

I What are the minimal & maximal elements in (Z+, |).
I Is there always a unique minimal/maximal element?

I What are the minimal element(s?) in (Z>1, |).
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Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

I Choose x1 from the poset - either it is minimal, or there is
some x2 6= x1 s.t. x2 � x1.

I If x2 is minimal, we are done; otherwise there is some
x3 6= x2 s.t. x3 � x2.

I Repeating this step k + 1 times, we get
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Minimal and maximal elements
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I If x2 is minimal, we are done; otherwise there is some
x3 6= x2 s.t. x3 � x2.

I Repeating this step k + 1 times, we get

xk+1 � xk � · · · � x2 � x1
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Minimal and maximal elements

Theorem
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Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

I Choose x1 from the poset - either it is minimal, or there is
some x2 6= x1 s.t. x2 � x1.

I If x2 is minimal, we are done; otherwise there is some
x3 6= x2 s.t. x3 � x2.

I Repeating this step k + 1 times, we get

xk+1 � xk � · · ·xj � · · · � xi+1 � xi � · · · � x2 � x1

I Since size of poset is k, we must have xj = xi, j < i.
We get xj � xi+1 and xi+1 � xj (violates anti-symmetry)
Contradiction!

6



Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

I Choose x1 from the poset - either it is minimal, or there is
some x2 6= x1 s.t. x2 � x1.

I If x2 is minimal, we are done; otherwise there is some
x3 6= x2 s.t. x3 � x2.

I Repeating this step k + 1 times, we get

xk+1 � xk � · · ·xj � · · · � xi+1 � xi � · · · � x2 � x1

I Since size of poset is k, we must have xj = xi, j < i.
We get xj � xi+1 and xi+1 � xj (violates anti-symmetry)
Contradiction!

Proof by induction?(H.W)
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Minimal and maximal elements

Theorem

Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

I Choose x1 from the poset - either it is minimal, or there is
some x2 6= x1 s.t. x2 � x1.

I If x2 is minimal, we are done; otherwise there is some
x3 6= x2 s.t. x3 � x2.

I Repeating this step k + 1 times, we get

xk+1 � xk � · · ·xj � · · · � xi+1 � xi � · · · � x2 � x1

I Since size of poset is k, we must have xj = xi, j < i.
We get xj � xi+1 and xi+1 � xj (violates anti-symmetry)
Contradiction!

What about infinite posets?
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Posets: Chains and Antichains

Let S = {1, 2, 3}. Recall the poset (P(S),⊆).

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure: Graph of a poset and its Hasse diagram

I Subsets that are totally ordered?

I Subsets that are unordered?
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Chains and Anti-chains

Definition

Let (S,�) be a poset. A subset B ⊆ S is called

I a chain if every pair of elements in B is related by �.

I That is, ∀a, b ∈ B, we have a � b or b � a (or both).

I Thus, � is a total order on B.

Definition

Let (S,�) be a poset. A subset A ⊆ S is called

I an anti-chain if no two distinct elements of A are related to
each other under �.

I That is, ∀a, b ∈ A, a 6= b, we have neither a � b nor b � a.
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Chains and Anti-chains: examples

I Let S = {1, 2, 3}.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure: Graph of poset (P(S),⊆) and its Hasse diagram

I What are the chains in this poset?

I What are the anti-chains in this poset?

I Give an example of an infinite chain & anti-chain in (Z+, |).
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Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

boil egg cut veg heat oil clean/cut chkn steam rice

make garnish

add spices/saute

saute/cook

mix

arrange/serve

I Clearly, this shows the dependencies.

I But when you cook you need a total order, right?

I Further, this total order must be consistent with the po.

I This is called a linearization or a topological sorting.
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Topological sorting

Definition

A topological sort or a linearization of a poset (S,�) is a poset
(S,�t) with a total order �t such that x � y implies x �t y.

Theorem

Every finite poset has a topological sort.

Proof: (H.W)

I Recall the lemma:
I Every finite non-empty poset has at least one minimal

element (x is minimal if 6 ∃y, y � x).

I Then, construct a (new) chain to complete the proof.
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