CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay
Guest Lecture by : R. Govind

Sep 05, 2023
Lecture 13 - Basic Mathematical Structures
Chains and Antichains

Recap: Partial order relations

Last class we saw

- Partial orders: definition and examples
- Posets, chains and anti-chains
- Graphical representation as Directed Acyclic Graphs
- Topological sorting (application to task scheduling)

Recall: Partial Orders

- A poset is a set S with a partial order $\preceq \subseteq S \times S$.
- A totally ordered set is a poset in which every pair of elements is comparable, i.e., $\forall a, b \in S$, either $a \preceq b$ or $b \preceq a$.

Definitions: Let (S, \preceq) be a poset.

- A subset $B \subseteq S$ is called a chain if every pair of elements in B is related by \preceq.
- A subset $A \subseteq S$ is called an anti-chain if no two distinct elements of A are related by \preceq.

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- Clearly, this shows the dependencies.

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- Clearly, this shows the dependencies.
- But when you cook you need a total order, right?

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- Clearly, this shows the dependencies.
- But when you cook you need a total order, right?
- Further, this total order must be consistent with the po.
- This is called a linearization or a topological sorting.

Tasks scheduling as a poset

Theorem

- Every finite poset has a topological sort, i.e., a totally ordered set that is consistent with the poset (H.W).

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_{t}) with a total order \preceq_{t} such that $x \preceq_{y}$ implies $x \preceq_{t} y$.

Theorem

Every finite poset has a topological sort.

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_{t}) with a total order \preceq_{t} such that $x \preceq_{y}$ implies $x \preceq_{t} y$.

Theorem

Every finite poset has a topological sort.
Proof: (H.W)

- Recall the lemma:
- Every finite non-empty poset has at least one minimal element (x is minimal if $\nexists y, y \preceq x$).
- Then, construct a (new) chain to complete the proof.

Topological sorting: example

Topological sorting: example

Topological sorting: example

$\{1\}$
\uparrow
\emptyset

Topological sorting: example

Figure: A poset and its Topological sort.

Tasks scheduling as a poset

Coming back to our example,

Tasks scheduling as a poset

Coming back to our example,

- Assume that every task takes 1 time unit.

Tasks scheduling as a poset

Coming back to our example,

- Assume that every task takes 1 time unit.
- How much time is required?

Parallel Task Scheduling and chains

Coming back to our example,

- What if there are many cooks, i.e., parallel processors?
- How do we schedule the tasks to minimize time used?

Parallel Task Scheduling and chains

Coming back to our example,

- What if there are many cooks, i.e., parallel processors?
- How do we schedule the tasks to minimize time used?

- Assume that every task takes 1 time unit.

Parallel Task Scheduling and chains

Coming back to our example,

- What if there are many cooks, i.e., parallel processors?
- How do we schedule the tasks to minimize time used?

- Assume that every task takes 1 time unit.
- Clearly, we still need at least 5 time units.

Parallel Task Scheduling and chains

Coming back to our example,

- What if there are many cooks, i.e., parallel processors?
- How do we schedule the tasks to minimize time used?

- Assume that every task takes 1 time unit.
- Clearly, we still need at least 5 time units.
- That is, the length of the longest chain (length of chain $=$ no. of elements in it).

Parallel Task Scheduling

For any poset, there is a legal parallel schedule that runs in t steps, where t is the length of the longest chain.

Parallel Task Scheduling

For any poset, there is a legal parallel schedule that runs in t steps, where t is the length of the longest chain.

We will in fact prove:
Theorem
For a finite poset (S, \preceq) with length of longest chain $=t$, we can partition S into t subsets S_{1}, \ldots, S_{t} such that $\forall i \in\{1, \ldots, t\}$, $\forall a \in S_{i}$, if $b \preceq a, b \neq a$ then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Parallel Task Scheduling

For any poset, there is a legal parallel schedule that runs in t steps, where t is the length of the longest chain.

We will in fact prove:

Theorem

For a finite poset (S, \preceq) with length of longest chain $=t$, we can partition S into t subsets S_{1}, \ldots, S_{t} such that $\forall i \in\{1, \ldots, t\}$, $\forall a \in S_{i}$, if $b \preceq a, b \neq a$ then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Assuming this theorem,

- Observe that we can schedule all of S_{i} at time i (since we know that all previous tasks were done earlier!).
- Thus, each S_{i} is an anti-chain.
- This solves the parallel task scheduling problem.

Parallel task scheduling and chains

Theorem

For a finite poset (S, \preceq) with length of longest chain $=t$, we can partition S into t subsets S_{1}, \ldots, S_{t} such that $\forall i \in\{1, \ldots, t\}$, $\forall a \in S_{i}$, if $b \preceq a, b \neq a$ then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Proof:

Parallel task scheduling and chains

Theorem

For a finite poset (S, \preceq) with length of longest chain $=t$, we can partition S into t subsets S_{1}, \ldots, S_{t} such that $\forall i \in\{1, \ldots, t\}$, $\forall a \in S_{i}$, if $b \preceq a, b \neq a$ then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Proof:

$$
\text { height }(x)=\{\max \text { size of a chain ending at } x\}
$$

Parallel task scheduling and chains

Theorem

For a finite poset (S, \preceq) with length of longest chain $=t$, we can partition S into t subsets S_{1}, \ldots, S_{t} such that $\forall i \in\{1, \ldots, t\}$, $\forall a \in S_{i}$, if $b \preceq a, b \neq a$ then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Proof:
height $(x)=\{$ max size of a chain ending at $x\}$

Parallel task scheduling and chains

Theorem

For a finite poset (S, \preceq) with length of longest chain $=t$, we can partition S into t subsets S_{1}, \ldots, S_{t} such that $\forall i \in\{1, \ldots, t\}$, $\forall a \in S_{i}$, if $b \preceq a, b \neq a$ then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Proof:
height $(x)=\{$ max size of a chain ending at $x\}$

Parallel task scheduling and chains

Theorem

For a finite poset (S, \preceq) with length of longest chain $=t$, we can partition S into t subsets S_{1}, \ldots, S_{t} such that $\forall i \in\{1, \ldots, t\}$, $\forall a \in S_{i}$, if $b \preceq a, b \neq a$ then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Proof:

$$
\text { height }(x)=\{\max \text { size of a chain ending at } x\}
$$

$$
S_{i}=\{x \mid \text { height }(x)=i\}
$$

Parallel task scheduling and chains

Theorem

For a finite poset (S, \preceq) with length of longest chain $=t$, we can partition S into t subsets S_{1}, \ldots, S_{t} such that $\forall i \in\{1, \ldots, t\}$, $\forall a \in S_{i}$, if $b \preceq a, b \neq a$ then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Proof:
height $(x)=\{\max$ size of a chain ending at $x\}$

$$
S_{i}=\{x \mid \text { height }(x)=i\}
$$

Parallel task scheduling and chains

Theorem

For a finite poset (S, \preceq) with length of longest chain $=t$, we can partition S into t subsets S_{1}, \ldots, S_{t} such that $\forall i \in\{1, \ldots, t\}$, $\forall a \in S_{i}$, if $b \preceq a, b \neq a$ then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Proof:

$$
\text { height }(x)=\{\max \text { size of a chain ending at } x\}
$$

$$
S_{i}=\{x \mid \text { height }(x)=i\}
$$

Lemma

For $a \in S_{i}$, if $b \preceq a$ and $b \neq a$, then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Parallel task scheduling and chains

$$
\begin{aligned}
& \text { height }(x)=\{\text { max size of a chain ending at } x\} \\
& \qquad S_{i}=\{x \mid \operatorname{height}(x)=i\}
\end{aligned}
$$

Lemma
For $a \in S_{i}$, if $b \preceq a$ and $b \neq a$, then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Parallel task scheduling and chains

$$
\begin{aligned}
& \text { height }(x)=\{\text { max size of a chain ending at } x\} \\
& \qquad S_{i}=\{x \mid \text { height }(x)=i\}
\end{aligned}
$$

Lemma

For $a \in S_{i}$, if $b \preceq a$ and $b \neq a$, then $b \in S_{1} \cup \ldots \cup S_{i-1}$.
Proof:

- Suppose $a \in S_{i}, b \preceq a, b \neq a$ but $b \notin S_{1} \cup \ldots \cup S_{i-1}$.

Parallel task scheduling and chains

$$
\begin{aligned}
& \text { height }(x)=\{\text { max size of a chain ending at } x\} \\
& \qquad S_{i}=\{x \mid \text { height }(x)=i\}
\end{aligned}
$$

Lemma

For $a \in S_{i}$, if $b \preceq a$ and $b \neq a$, then $b \in S_{1} \cup \ldots \cup S_{i-1}$.
Proof:

- Suppose $a \in S_{i}, b \preceq a, b \neq a$ but $b \notin S_{1} \cup \ldots \cup S_{i-1}$.
- By defn of S_{i}, \exists chain of length at least i ending at b.

Parallel task scheduling and chains

$$
\begin{aligned}
& \text { height }(x)=\{\text { max size of a chain ending at } x\} \\
& \qquad S_{i}=\{x \mid \text { height }(x)=i\}
\end{aligned}
$$

Lemma

For $a \in S_{i}$, if $b \preceq a$ and $b \neq a$, then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Proof:

- Suppose $a \in S_{i}, b \preceq a, b \neq a$ but $b \notin S_{1} \cup \ldots \cup S_{i-1}$.
- By defn of S_{i}, \exists chain of length at least i ending at b.
- But now, $b \preceq a, b \neq a$ implies we can extend the chain to chain of length $\geq i+1$, ending at a.

Parallel task scheduling and chains

$$
\begin{aligned}
& \text { height }(x)=\{\text { max size of a chain ending at } x\} \\
& \qquad S_{i}=\{x \mid \text { height }(x)=i\}
\end{aligned}
$$

Lemma

For $a \in S_{i}$, if $b \preceq a$ and $b \neq a$, then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Proof:

- Suppose $a \in S_{i}, b \preceq a, b \neq a$ but $b \notin S_{1} \cup \ldots \cup S_{i-1}$.
- By defn of S_{i}, \exists chain of length at least i ending at b.
- But now, $b \preceq a, b \neq a$ implies we can extend the chain to chain of length $\geq i+1$, ending at a.
- But then a cannot be in S_{i}. Contradiction.

Parallel task scheduling and chains

Theorem

For a finite poset (S, \preceq) with length of longest chain $=t$, we can partition S into t subsets S_{1}, \ldots, S_{t} such that $\forall i \in\{1, \ldots, t\}$, $\forall a \in S_{i}$, if $b \preceq a, b \neq a$ then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Parallel task scheduling and chains

Theorem

For a finite poset (S, \preceq) with length of longest chain $=t$, we can partition S into t subsets S_{1}, \ldots, S_{t} such that $\forall i \in\{1, \ldots, t\}$, $\forall a \in S_{i}$, if $b \preceq a, b \neq a$ then $b \in S_{1} \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_{i} such that i is the length of the longest chain ending at a.

Consequences for chains and anti-chains

Since each S_{i} was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \preceq) is of length t, then S can be partitioned into t anti-chains.

Consequences for chains and anti-chains

Since each S_{i} was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \preceq) is of length t, then S can be partitioned into t anti-chains.
(H.W) Apply this on the poset $(\mathcal{P}(S), \subseteq)$, where $S=\{1,2,3\}$. What does it imply for this poset?

Consequences for chains and anti-chains

Since each S_{i} was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \preceq) is of length t, then S can be partitioned into t anti-chains.
(H.W) Apply this on the poset $(\mathcal{P}(S), \subseteq)$, where $S=\{1,2,3\}$. What does it imply for this poset?

Another corollary (Dilworth's Lemma)

For all $t>0$, any poset with n elements must have

- either a chain of length greater than t
- or an antichain with at least $\frac{n}{t}$ elements.
(H.W): Prove it!

