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Recap: Partial order relations

Last class we saw
I Partial orders: definition and examples

I Posets, chains and anti-chains

I Graphical representation as Directed Acyclic Graphs

I Topological sorting (application to task scheduling)
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Recall: Partial Orders

I A poset is a set S with a partial order � ⊆ S × S.

I A totally ordered set is a poset in which every pair of
elements is comparable, i.e., ∀a, b ∈ S, either a � b or b � a.

Definitions: Let (S,�) be a poset.

I A subset B ⊆ S is called a chain if every pair of elements in
B is related by �.

I A subset A ⊆ S is called an anti-chain if no two distinct
elements of A are related by �.
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Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

boil egg cut veg heat oil clean/cut chkn steam rice

make garnish

add spices/saute

saute/cook

mix

arrange/serve

I Clearly, this shows the dependencies.

I But when you cook you need a total order, right?

I Further, this total order must be consistent with the po.

I This is called a linearization or a topological sorting.
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Tasks scheduling as a poset

boil egg cut veg heat oil clean/cut chkn steam rice

make garnish

add spices/saute

saute/cook

mix

arrange/serve

Theorem
I Every finite poset has a topological sort, i.e., a totally

ordered set that is consistent with the poset (H.W).
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Topological sorting

Definition

A topological sort or a linearization of a poset (S,�) is a poset
(S,�t) with a total order �t such that x � y implies x �t y.

Theorem

Every finite poset has a topological sort.

Proof: (H.W)

I Recall the lemma:
I Every finite non-empty poset has at least one minimal

element (x is minimal if 6 ∃y, y � x).

I Then, construct a (new) chain to complete the proof.
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Topological sorting: example

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}
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Figure: A poset and its Topological sort.
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Tasks scheduling as a poset

Coming back to our example,

boil egg cut veg heat oil clean/cut chkn steam rice

make garnish add spices/saute

saute/cook

mix

arrange/serve

I Assume that every task takes 1 time unit.

I How much time is required?
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Parallel Task Scheduling and chains

Coming back to our example,

I What if there are many cooks, i.e., parallel processors?

I How do we schedule the tasks to minimize time used?

boil egg cut veg heat oil clean/cut chkn steam rice

make garnish add spices/saute

saute/cook

mix

arrange/serve

I Assume that every task takes 1 time unit.

I Clearly, we still need at least 5 time units.

I That is, the length of the longest chain (length of chain =
no. of elements in it).
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Parallel Task Scheduling

For any poset, there is a legal parallel schedule that runs in
t steps, where t is the length of the longest chain.

We will in fact prove:

Theorem

For a finite poset (S,�) with length of longest chain = t, we can
partition S into t subsets S1, . . . , St such that ∀i ∈ {1, . . . , t},
∀a ∈ Si, if b � a, b 6= a then b ∈ S1 ∪ . . . ∪ Si−1.

Assuming this theorem,

I Observe that we can schedule all of Si at time i (since we
know that all previous tasks were done earlier!).

I Thus, each Si is an anti-chain.

I This solves the parallel task scheduling problem.
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Parallel task scheduling and chains

height(x) = {max size of a chain ending at x}

Si = {x | height(x) = i}

Lemma

For a ∈ Si, if b � a and b 6= a, then b ∈ S1 ∪ . . . ∪ Si−1.

Proof:

I Suppose a ∈ Si, b � a, b 6= a but b 6∈ S1 ∪ . . . ∪ Si−1.

I By defn of Si, ∃ chain of length at least i ending at b.

I But now, b � a, b 6= a implies we can extend the chain to
chain of length ≥ i + 1, ending at a.

I But then a cannot be in Si. Contradiction.
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Parallel task scheduling and chains
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For a finite poset (S,�) with length of longest chain = t, we can
partition S into t subsets S1, . . . , St such that ∀i ∈ {1, . . . , t},
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boil egg cut veg heat oil clean/cut chkn steam rice

make garnish add spices/saute

saute/cook

mix

arrange/serve

S1

S2

S3

S4

S5
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Consequences for chains and anti-chains

Since each Si was an anti-chain, a celebrated result follows...

Corollary (Mirsky’s theorem, 1971)

If the longest chain in a poset (S,�) is of length t, then S can
be partitioned into t anti-chains.
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What does it imply for this poset?
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be partitioned into t anti-chains.

(H.W) Apply this on the poset (P(S),⊆), where S = {1, 2, 3}.
What does it imply for this poset?

Another corollary (Dilworth’s Lemma)

For all t > 0, any poset with n elements must have

I either a chain of length greater than t

I or an antichain with at least n
t elements.

(H.W): Prove it!
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