CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Sept 07, 2023
Lecture 14 - a little bit on lattices and on to Counting

Recap: Partial order relations

Last two classes we saw

- Partial orders: definition and examples
- Posets, chains and anti-chains
- Graphical representation as Directed Acyclic Graphs
- Topological sorting (application to task scheduling)
- Mirsky's theorem (application to parallel task scheduling)

Minimal and maximal elements

Poset $P_{1}=\left(S_{1}, \subseteq\right)$
where $S_{1}=\mathcal{P}(\{1,2,3\})$

Poset $P_{2}=\left(S_{2}, \subseteq\right)$
where $S_{2}=\mathcal{P}(\{1,2,3\}) \backslash\{\emptyset,\{1,2,3\}\}$

Minimal and maximal elements

$$
\begin{gathered}
\text { Poset } P_{1}=\left(S_{1}, \subseteq\right) \\
\text { where } S_{1}=\mathcal{P}(\{1,2,3\})
\end{gathered}
$$

$$
\text { Poset } P_{2}=\left(S_{2}, \subseteq\right)
$$

$$
\text { where } S_{2}=\mathcal{P}(\{1,2,3\}) \backslash\{\emptyset,\{1,2,3\}\}
$$

Let (S, \preceq) be a poset.

- $a \in S$ is minimal in S if $\forall b \in S, b \preceq a \Longrightarrow b=a$
- $a \in S$ is maximal in S if $\forall b \in S, a \preceq b \Longrightarrow a=b$.

Minimal and maximal elements

Poset $P_{1}=\left(S_{1}, \subseteq\right)$
where $S_{1}=\mathcal{P}(\{1,2,3\})$

Poset $P_{2}=\left(S_{2}, \subseteq\right)$
where $S_{2}=\mathcal{P}(\{1,2,3\}) \backslash\{\emptyset,\{1,2,3\}\}$

Let (S, \preceq) be a poset.

- $a \in S$ is minimal in S if $\forall b \in S, b \preceq a \Longrightarrow b=a$
- $a \in S$ is maximal in S if $\forall b \in S, a \preceq b \Longrightarrow a=b$.
- $a \in S$ is least/minimum element of S if $\forall b \in S, a \preceq b$
- $a \in S$ is greatest/maximum element of S if $\forall b \in S, b \preceq a$.

Minimal and maximal elements

Poset $P_{1}=\left(S_{1}, \subseteq\right)$

Poset $P_{2}=\left(S_{2}, \subseteq\right)$

Let (S, \preceq) be a poset.

- $a \in S$ is minimal in S if $\forall b \in S, b \preceq a \Longrightarrow b=a$
- $a \in S$ is maximal in S if $\forall b \in S, a \preceq b \Longrightarrow a=b$.
- $a \in S$ is least/minimum element of S if $\forall b \in S, a \preceq b$
- $a \in S$ is greatest/maximum element of S if $\forall b \in S, b \preceq a$.

Examples: \emptyset is a minimal and the minimum element in P_{1}, $\{1\},\{2\},\{3\}$ are all minimal elements in P_{2}, but P_{2} does not have any minimum element.

Minimal and maximal elements

Poset $P_{1}=\left(S_{1}, \subseteq\right)$

Poset $P_{2}=\left(S_{2}, \subseteq\right)$

Let (S, \preceq) be a poset.

- $a \in S$ is minimal in S if $\forall b \in S, b \preceq a \Longrightarrow b=a$
- $a \in S$ is maximal in S if $\forall b \in S, a \preceq b \Longrightarrow a=b$.
- $a \in S$ is least/minimum element of S if $\forall b \in S, a \preceq b$
- $a \in S$ is greatest/maximum element of S if $\forall b \in S, b \preceq a$.

Examples: \emptyset is a minimal and the minimum element in P_{1}, $\{1\},\{2\},\{3\}$ are all minimal elements in P_{2}, but P_{2} does not have any minimum element.
Exercise: What are the maximal/maximum elements in P_{1}, P_{2} ?

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Poset $P_{1}=\left(S_{1}, \subseteq\right)$

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Poset $P_{1}=\left(S_{1}, \subseteq\right)$

- Let $A=\{\{1\},\{2\}\}$. Then $\{1,2\},\{1,2,3\}$ are upper bounds of A in P_{1} and $\{1,2\}$ is the lub of A.

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Poset $P_{3}=\left(S_{3}, \underline{)}\right)$

- Consider $P_{3}=\left(S_{3}, \preceq\right)$ where $S_{3}=\{X, Y, Z, W\}$ and the \preceq is as given by the arrows. Let $B=\{X, Y\}$. Then Z, W are both upper bounds of B in P_{3}, but B has no lub in P_{3}.

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Some Obervations (Exercise: Prove it!)

- The lub/glb of a subset A in S, if it exists, is unique.
- If the lub/glb of $A \subseteq S$ belongs to A, then it is the greatest/least element of A.

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- $(\mathcal{P}(S), \subseteq)$ is a lattice.
- What about $(\{2,4,5,10,12,20,25\}, \mid)$?

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- $(\mathcal{P}(S), \subseteq)$ is a lattice.
- What about $(\{2,4,5,10,12,20,25\}, \mid)$?

Applications of Lattices

- Models of information flow -

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- $(\mathcal{P}(S), \subseteq)$ is a lattice.
- What about $(\{2,4,5,10,12,20,25\}, \mid)$?

Applications of Lattices

- Models of information flow - think security clearence.

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- $(\mathcal{P}(S), \subseteq)$ is a lattice.
- What about $(\{2,4,5,10,12,20,25\}, \mid)$?

Applications of Lattices

- Models of information flow - think security clearence.
- Finite lattices have a strong link with Boolean Algebra

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- $(\mathcal{P}(S), \subseteq)$ is a lattice.
- What about $(\{2,4,5,10,12,20,25\}, \mid)$?

Applications of Lattices

- Models of information flow - think security clearence.
- Finite lattices have a strong link with Boolean Algebra
- Several other applications in many domains of mathematics and CS, including formal semantics of programming languages, program verification.

Summary till now

Course Outline

1. Proofs and structures
2. Counting and combinatorics
3. Introduction to graph theory

Summary till now

Course Outline

1. Proofs and structures

- Propositions, predicates
- Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.
- Basic mathematical structures: (finite and infinite) sets, functions, relations.
- Relations: equivalence relations, partial orders, lattices
- Some applications

2. Counting and combinatorics
3. Introduction to graph theory

Summary till now

Course Outline

1. Proofs and structures

- Propositions, predicates
- Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.
- Basic mathematical structures: (finite and infinite) sets, functions, relations.
- Relations: equivalence relations, partial orders, lattices
- Some applications
- Functions: To compare infinite sets
- Using diagonalization to prove impossibility results.
- Equivalences: Defining "like" partitions.
- Posets: Topological sort, (parallel) task scheduling, lattices

2. Counting and combinatorics
3. Introduction to graph theory

Summary till now

Course Outline

1. Proofs and structures

- Propositions, predicates
- Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.
- Basic mathematical structures: (finite and infinite) sets, functions, relations.
- Relations: equivalence relations, partial orders, lattices
- Some applications

2. Counting and combinatorics
3. Introduction to graph theory

Pop Quiz

Pop Quiz

Fill the feedback form at
https://forms.gle/uP39XHMmqmx63qUTA

Next chapter: Counting and Combinatorics

Topics to be covered

- Basics of counting
- Subsets, partitions, Permutations and combinations
- Pigeonhole Principle and its extensions
- Recurrence relations and generating functions

