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Least upper bounds and greatest lower bounds

Let (S,�) be a poset and A ⊆ S.

I u ∈ S (resp. l ∈ S) is called an upper bound (resp. lower
bound) of A iff a � u (resp. l � a) for all a ∈ A.
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∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Poset P1 = (S1,⊆)
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∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Poset P1 = (S1,⊆)

I Let A = {{1}, {2}}. Then {1, 2}, {1, 2, 3} are upper bounds of A
in P1 and {1, 2} is the lub of A.
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Least upper bounds and greatest lower bounds

Let (S,�) be a poset and A ⊆ S.

I u ∈ S (resp. l ∈ S) is called an upper bound (resp. lower
bound) of A iff a � u (resp. l � a) for all a ∈ A.
I u ∈ S is the least upper bound (lub) of A if it is an upper

bound of A and is less than every other upper bound.
I l ∈ S is the greatest lower bound (glb) of A if it is an lower

bound of A and is greater than every other lower bound.

.

X Y

Z W

Poset P3 = (S3,�)

I Consider P3 = (S3,�) where S3 = {X,Y, Z,W} and the � is as
given by the arrows. Let B = {X,Y }. Then Z,W are both
upper bounds of B in P3, but B has no lub in P3.
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Least upper bounds and greatest lower bounds

Let (S,�) be a poset and A ⊆ S.

I u ∈ S (resp. l ∈ S) is called an upper bound (resp. lower
bound) of A iff a � u (resp. l � a) for all a ∈ A.
I u ∈ S is the least upper bound (lub) of A if it is an upper

bound of A and is less than every other upper bound.
I l ∈ S is the greatest lower bound (glb) of A if it is an lower

bound of A and is greater than every other lower bound.

Some Obervations (Exercise: Prove it!)

I The lub/glb of a subset A in S, if it exists, is unique.

I If the lub/glb of A ⊆ S belongs to A, then it is the
greatest/least element of A.
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Lattices

Definition
I A lattice is a poset in which every pair of elements has both

a lub and a glb (in the set), i.e., ∀x, y ∈ S, there exists
l, u ∈ S such that l is the glb and u is the lub of {x, y}.

I (P(S),⊆) is a lattice.

I What about ({2, 4, 5, 10, 12, 20, 25}, |) ?

Applications of Lattices

I Models of information flow – think security clearence.

I Finite lattices have a strong link with Boolean Algebra

I Several other applications in many domains of mathematics
and CS, including formal semantics of programming
languages, program verification.
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Next chapter: Counting and Combinatorics

Topics to be covered

I Basics of counting

I Subsets, partitions, Permutations and combinations

I Recurrence relations and generating functions

I Pigeonhole Principle and its extensions
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Introduction to combinatorics

Does it really need an introduction

I Enumerative combinatorics: counting
combinatorial/discrete objects e.g., sets, numbers,
structures...

I Existential combinatorics: show that there exist some
combinatorial “configurations”.

I Constructive combinatorics: construct interesting
configurations...
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Simple examples and principles...

I How many reflexive relations are there on a set A of size n?
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I How many reflexive relations are there on a set A of size n?

I Reflexive relations are ordered pairs of which there are n2.
I Of these, all n pairs of (a, a) have be present.
I Of the remaining, we can choose any of them to be in or out.
I there are n2 − n of them, so 2n

2−n of them.
I We used the so-called “product principle”...

6



Simple examples and principles...

I How many reflexive relations are there on a set A of size n?

I Reflexive relations are ordered pairs of which there are n2.
I Of these, all n pairs of (a, a) have be present.
I Of the remaining, we can choose any of them to be in or out.
I there are n2 − n of them, so 2n

2−n of them.
I We used the so-called “product principle”...

The product principle

If there are n1 ways of doing something and n2 ways of doing
another thing, then there are n1 · n2 ways of performing both
actions.
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I Recurrence: F (n) = 2 · F (n− 1), F (0) = 1. solve it?
I Sum principle: Subsets of size 0 + subsets of size 1 + . . . +

subsets of size n = Total number of subsets.

Sum Principle

If something can be done in n1 or n2 ways such that none of the
n1 ways is the same as any of the n2 ways, then the total
number of ways to do this is n1 + n2.
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(characteristic vector).
I Induction: Since we already know the answer!
I Recurrence: F (n) = 2 · F (n− 1), F (0) = 1. solve it?
I Sum principle: Subsets of size 0 + subsets of size 1 + . . . +

subsets of size n = Total number of subsets.

I But, how many subsets of size k does a set of n elements
have? This number, denoted

(
n
k

)
, is called a binomial

coefficient.
I We all know(?) that

(
n
k

)
= n!

k!(n−k)! . Prove it!
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Permutations and combinations

Binomial Coefficients. Let n, k be integers s.t., n ≥ k ≥ 0.

How many subsets of size k does a set of n elements have? This
number, denoted

(
n
k

)
, is called a binomial coefficient.

One proof of
(
n
k

)
= n!

k!(n−k)! is as follows:
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I No. of ordered subsets of size k = (no. of unordered
subsets)×(no. of ways to order them)=

(
n
k

)
× k!.

I Equate them! Principle of double counting.
I if you can’t count something, count something else and

count it twice over!
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Binomial Coefficients. Let n, k be integers s.t., n ≥ k ≥ 0.

How many subsets of size k does a set of n elements have? This
number, denoted

(
n
k

)
, is called a binomial coefficient.

One proof of
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k

)
= n!

k!(n−k)! is as follows: Let us count the
number of “ordered” subsets of size k.

I No. of ordered subsets of size k= n · (n− 1) · · · (n− k + 1).

I No. of ordered subsets of size k = (no. of unordered
subsets)×(no. of ways to order them)=

(
n
k

)
× k!.

I Equate them! Principle of double counting.

Permutations and combinations
I No. of k-size subsets of set of size n = No. of

k-combinations of a set of n (distinct) elements =
(
n
k

)
.

I No. of k-size ordered subsets of set of size n = No. of
k-permutations of a set of n (distinct) elements.
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Simple examples to illustrate “double counting”

Prove the following identities (by only using double
counting!)

1.

n∑
k=0

(
n

k

)
= 2n.

2.

(
n

k

)
=

(
n

n− k

)
.

3. k

(
n

k

)
= n

(
n− 1

k − 1

)
4.

(
n + 1

k

)
=

(
n

k − 1

)
+

(
n

k

)

The latter two are in fact recursive definitions for
(
n
k

)
. What

are the boundary conditions?
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A more interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake
hands an odd number of times is even.

What will you count here?

Proof in six steps:

1. Define a relation R: iRj if i and j shook hands.

2. Is this relation symmetric (trans/refl.)? Draw its graph.

3. Let mi be the number of times i shakes hands. i.e., mi is
the number of directed edges going out from i.

4. Therefore, Total no. of directed edges =
∑

imi.

5. But now, let X be the total number of handshakes. Clearly
this is an integer. Total no. of directed edges = 2 ·X.

6. This implies,
∑

imi = 2 ·X. Which means that number of
i such that mi is odd is even!
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