CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Sept 11, 2023
Lecture 15 - Counting

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Poset $P_{1}=\left(S_{1}, \subseteq\right)$

- Let $A=\{\{1\},\{2\}\}$. Then $\{1,2\},\{1,2,3\}$ are upper bounds of A in P_{1} and $\{1,2\}$ is the lub of A.

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Poset $P_{3}=\left(S_{3}, \preceq\right)$

- Consider $P_{3}=\left(S_{3}, \preceq\right)$ where $S_{3}=\{X, Y, Z, W\}$ and the \preceq is as given by the arrows. Let $B=\{X, Y\}$. Then Z, W are both upper bounds of B in P_{3}, but B has no lub in P_{3}.

Least upper bounds and greatest lower bounds

Let (S, \preceq) be a poset and $A \subseteq S$.

- $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Some Obervations (Exercise: Prove it!)

- The lub/glb of a subset A in S, if it exists, is unique.
- If the lub/glb of $A \subseteq S$ belongs to A, then it is the greatest/least element of A.

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- $(\mathcal{P}(S), \subseteq)$ is a lattice.
- What about $(\{2,4,5,10,12,20,25\}, \mid)$?

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- $(\mathcal{P}(S), \subseteq)$ is a lattice.
- What about $(\{2,4,5,10,12,20,25\}, \mid)$?

Applications of Lattices

- Models of information flow -

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- $(\mathcal{P}(S), \subseteq)$ is a lattice.
- What about $(\{2,4,5,10,12,20,25\}, \mid)$?

Applications of Lattices

- Models of information flow - think security clearence.

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- $(\mathcal{P}(S), \subseteq)$ is a lattice.
- What about $(\{2,4,5,10,12,20,25\}, \mid)$?

Applications of Lattices

- Models of information flow - think security clearence.
- Finite lattices have a strong link with Boolean Algebra

Lattices

Definition

- A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.
- $(\mathcal{P}(S), \subseteq)$ is a lattice.
- What about $(\{2,4,5,10,12,20,25\}, \mid)$?

Applications of Lattices

- Models of information flow - think security clearence.
- Finite lattices have a strong link with Boolean Algebra
- Several other applications in many domains of mathematics and CS, including formal semantics of programming languages, program verification.

Next chapter: Counting and Combinatorics

Topics to be covered

- Basics of counting
- Subsets, partitions, Permutations and combinations
- Recurrence relations and generating functions
- Pigeonhole Principle and its extensions

Introduction to combinatorics

Does it really need an introduction

Introduction to combinatorics

Does it really need an introduction

- Enumerative combinatorics: counting combinatorial/discrete objects e.g., sets, numbers, structures...
- Existential combinatorics: show that there exist some combinatorial "configurations".
- Constructive combinatorics: construct interesting configurations...

Simple examples and principles...

- How many reflexive relations are there on a set A of size n ?

Simple examples and principles...

- How many reflexive relations are there on a set A of size n ?
- Reflexive relations are ordered pairs of which there are n^{2}.
- Of these, all n pairs of (a, a) have be present.
- Of the remaining, we can choose any of them to be in or out.
- there are $n^{2}-n$ of them, so $2^{n^{2}-n}$ of them.
- We used the so-called "product principle"...

Simple examples and principles...

- How many reflexive relations are there on a set A of size n ?
- Reflexive relations are ordered pairs of which there are n^{2}.
- Of these, all n pairs of (a, a) have be present.
- Of the remaining, we can choose any of them to be in or out.
- there are $n^{2}-n$ of them, so $2^{n^{2}-n}$ of them.
- We used the so-called "product principle"...

The product principle

If there are n_{1} ways of doing something and n_{2} ways of doing another thing, then there are $n_{1} \cdot n_{2}$ ways of performing both actions.

Simple examples and principles...

- How many reflexive relations are there on a set A of size n ?

Simple examples and principles...

- How many reflexive relations are there on a set A of size n ?
- How many functions are there from a set of size n to itself?

Simple examples and principles...

- How many reflexive relations are there on a set A of size n ?
- How many functions are there from a set of size n to itself?
- How many subsets does a set A of n elements have?

Simple examples and principles...

- How many reflexive relations are there on a set A of size n ?
- How many functions are there from a set of size n to itself?
- How many subsets does a set A of n elements have?
- Product principle: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (n-times).
- Bijection: between $\mathcal{P}(X)$ and n-length sequences over $\{0,1\}$ (characteristic vector).
- Induction: Since we already know the answer!
- Recurrence: $F(n)=2 \cdot F(n-1), F(0)=1$. solve it?
- Sum principle: Subsets of size $0+$ subsets of size $1+\ldots+$ subsets of size $n=$ Total number of subsets.

Simple examples and principles...

- How many reflexive relations are there on a set A of size n ?
- How many functions are there from a set of size n to itself?
- How many subsets does a set A of n elements have?
- Product principle: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (n-times).
- Bijection: between $\mathcal{P}(X)$ and n-length sequences over $\{0,1\}$ (characteristic vector).
- Induction: Since we already know the answer!
- Recurrence: $F(n)=2 \cdot F(n-1), F(0)=1$. solve it?
- Sum principle: Subsets of size $0+$ subsets of size $1+\ldots+$ subsets of size $n=$ Total number of subsets.

Sum Principle

If something can be done in n_{1} or n_{2} ways such that none of the n_{1} ways is the same as any of the n_{2} ways, then the total number of ways to do this is $n_{1}+n_{2}$.

Simple examples and principles...

- How many reflexive relations are there on a set A of size n ?
- How many functions are there from a set of size n to itself?
- How many subsets does a set A of n elements have?
- Product principle: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (n-times).
- Bijection: between $\mathcal{P}(X)$ and n-length sequences over $\{0,1\}$ (characteristic vector).
- Induction: Since we already know the answer!
- Recurrence: $F(n)=2 \cdot F(n-1), F(0)=1$. solve it?
- Sum principle: Subsets of size $0+$ subsets of size $1+\ldots+$ subsets of size $n=$ Total number of subsets.
- But, how many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

Simple examples and principles...

- How many reflexive relations are there on a set A of size n ?
- How many functions are there from a set of size n to itself?
- How many subsets does a set A of n elements have?
- Product principle: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (n-times).
- Bijection: between $\mathcal{P}(X)$ and n-length sequences over $\{0,1\}$ (characteristic vector).
- Induction: Since we already know the answer!
- Recurrence: $F(n)=2 \cdot F(n-1), F(0)=1$. solve it?
- Sum principle: Subsets of size $0+$ subsets of size $1+\ldots+$ subsets of size $n=$ Total number of subsets.
- But, how many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.
- We all $\operatorname{know}(?)$ that $\binom{n}{k}=\frac{n!}{k!(n-k)!}$. Prove it!

Permutations and combinations

Binomial Coefficients. Let n, k be integers s.t., $n \geq k \geq 0$.
How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is as follows:

Permutations and combinations

Binomial Coefficients. Let n, k be integers s.t., $n \geq k \geq 0$.
How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is as follows: Let us count the number of "ordered" subsets of size k.

Permutations and combinations

Binomial Coefficients. Let n, k be integers s.t., $n \geq k \geq 0$.
How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is as follows: Let us count the number of "ordered" subsets of size k.

- No. of ordered subsets of size $k=n \cdot(n-1) \cdots(n-k+1)$.

Permutations and combinations

Binomial Coefficients. Let n, k be integers s.t., $n \geq k \geq 0$.
How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is as follows: Let us count the number of "ordered" subsets of size k.

- No. of ordered subsets of size $k=n \cdot(n-1) \cdots(n-k+1)$.
- No. of ordered subsets of size $k=$ (no. of unordered subsets $) \times($ no. of ways to order them $)=\binom{n}{k} \times k!$.

Permutations and combinations

Binomial Coefficients. Let n, k be integers s.t., $n \geq k \geq 0$.

How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is as follows: Let us count the number of "ordered" subsets of size k.

- No. of ordered subsets of size $k=n \cdot(n-1) \cdots(n-k+1)$.
- No. of ordered subsets of size $k=$ (no. of unordered subsets $) \times($ no. of ways to order them $)=\binom{n}{k} \times k!$.
- Equate them! Principle of double counting.
- if you can't count something, count something else and count it twice over!

Permutations and combinations

Binomial Coefficients. Let n, k be integers s.t., $n \geq k \geq 0$.

How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is as follows: Let us count the number of "ordered" subsets of size k.

- No. of ordered subsets of size $k=n \cdot(n-1) \cdots(n-k+1)$.
- No. of ordered subsets of size $k=$ (no. of unordered subsets $) \times($ no. of ways to order them $)=\binom{n}{k} \times k!$.
- Equate them! Principle of double counting.

Permutations and combinations

- No. of k-size subsets of set of size $n=$ No. of k-combinations of a set of n (distinct) elements $=\binom{n}{k}$.
- No. of k-size ordered subsets of set of size $n=$ No. of k-permutations of a set of n (distinct) elements.

Simple examples to illustrate "double counting"

Prove the following identities (by only using double counting!)

$$
\begin{aligned}
& \text { 1. } \sum_{k=0}^{n}\binom{n}{k}=2^{n} . \\
& \text { 2. }\binom{n}{k}=\binom{n}{n-k} . \\
& \text { 3. } k\binom{n}{k}=n\binom{n-1}{k-1} \\
& \text { 4. }\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
\end{aligned}
$$

Simple examples to illustrate "double counting"

Prove the following identities (by only using double counting!)

$$
\begin{aligned}
& \text { 1. } \sum_{k=0}^{n}\binom{n}{k}=2^{n} . \\
& \text { 2. }\binom{n}{k}=\binom{n}{n-k} . \\
& \text { 3. } k\binom{n}{k}=n\binom{n-1}{k-1} \\
& \text { 4. }\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
\end{aligned}
$$

The latter two are in fact recursive definitions for $\binom{n}{k}$. What are the boundary conditions?

A more interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

What will you count here?

A more interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.

A more interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.

3 . Let m_{i} be the number of times i shakes hands.

A more interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.
3. Let m_{i} be the number of times i shakes hands. i.e., m_{i} is the number of directed edges going out from i.

A more interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.
3. Let m_{i} be the number of times i shakes hands. i.e., m_{i} is the number of directed edges going out from i.
4. Therefore, Total no. of directed edges $=\sum_{i} m_{i}$.

A more interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.
3. Let m_{i} be the number of times i shakes hands. i.e., m_{i} is the number of directed edges going out from i.
4. Therefore, Total no. of directed edges $=\sum_{i} m_{i}$.
5. But now, let X be the total number of handshakes. Clearly this is an integer.

A more interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.
3. Let m_{i} be the number of times i shakes hands. i.e., m_{i} is the number of directed edges going out from i.
4. Therefore, Total no. of directed edges $=\sum_{i} m_{i}$.
5. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges $=2 \cdot X$.

A more interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.
3. Let m_{i} be the number of times i shakes hands. i.e., m_{i} is the number of directed edges going out from i.
4. Therefore, Total no. of directed edges $=\sum_{i} m_{i}$.
5. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges $=2 \cdot X$.
6. This implies, $\sum_{i} m_{i}=2 \cdot X$. Which means that number of i such that m_{i} is odd is even!
