
CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Sept 16, 2023
Lecture 16 – Counting and Combinatorics
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Counting and Combinatorics

Topics to be covered

I Basics of counting
I Product principle
I Sum principle
I Bijection principle
I Double counting

I Subsets, partitions, Permutations and combinations

1. Binomial coefficients and Binomial theorem
2. Pascal’s triangle
3. Permutations and combinations with repetitions

I Recurrence relations and generating functions

I Pigeonhole Principle and its extensions
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Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake
hands an odd number of times is even.

What will you count here?

Proof in six steps:

1. Define a relation R: iRj if i and j shook hands.

2. Is this relation symmetric (trans/refl.)? Draw its graph.

3. Let mi be the number of times i shakes hands. i.e., mi is
the number of directed edges going out from i.

4. Therefore, Total no. of directed edges =
∑

imi.

5. But now, let X be the total number of handshakes. Clearly
this is an integer. Total no. of directed edges = 2 ·X.

6. This implies,
∑

imi = 2 ·X. Which means that number of
i such that mi is odd is even!

3



Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake
hands an odd number of times is even.

Proof in six steps:

1. Define a relation R: iRj if i and j shook hands.

2. Is this relation symmetric (trans/refl.)? Draw its graph.

3. Let mi be the number of times i shakes hands. i.e., mi is
the number of directed edges going out from i.

4. Therefore, Total no. of directed edges =
∑

imi.

5. But now, let X be the total number of handshakes. Clearly
this is an integer. Total no. of directed edges = 2 ·X.

6. This implies,
∑

imi = 2 ·X. Which means that number of
i such that mi is odd is even!

3



Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake
hands an odd number of times is even.

Proof in six steps:

1. Define a relation R: iRj if i and j shook hands.

2. Is this relation symmetric (trans/refl.)? Draw its graph.

3. Let mi be the number of times i shakes hands.

i.e., mi is
the number of directed edges going out from i.

4. Therefore, Total no. of directed edges =
∑

imi.

5. But now, let X be the total number of handshakes. Clearly
this is an integer. Total no. of directed edges = 2 ·X.

6. This implies,
∑

imi = 2 ·X. Which means that number of
i such that mi is odd is even!

3



Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake
hands an odd number of times is even.

Proof in six steps:

1. Define a relation R: iRj if i and j shook hands.

2. Is this relation symmetric (trans/refl.)? Draw its graph.

3. Let mi be the number of times i shakes hands. i.e., mi is
the number of directed edges going out from i.

4. Therefore, Total no. of directed edges =
∑

imi.

5. But now, let X be the total number of handshakes. Clearly
this is an integer. Total no. of directed edges = 2 ·X.

6. This implies,
∑

imi = 2 ·X. Which means that number of
i such that mi is odd is even!

3



Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake
hands an odd number of times is even.

Proof in six steps:

1. Define a relation R: iRj if i and j shook hands.

2. Is this relation symmetric (trans/refl.)? Draw its graph.

3. Let mi be the number of times i shakes hands. i.e., mi is
the number of directed edges going out from i.

4. Therefore, Total no. of directed edges =
∑

imi.

5. But now, let X be the total number of handshakes. Clearly
this is an integer. Total no. of directed edges = 2 ·X.

6. This implies,
∑

imi = 2 ·X. Which means that number of
i such that mi is odd is even!

3



Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake
hands an odd number of times is even.

Proof in six steps:

1. Define a relation R: iRj if i and j shook hands.

2. Is this relation symmetric (trans/refl.)? Draw its graph.

3. Let mi be the number of times i shakes hands. i.e., mi is
the number of directed edges going out from i.

4. Therefore, Total no. of directed edges =
∑

imi.

5. But now, let X be the total number of handshakes. Clearly
this is an integer.

Total no. of directed edges = 2 ·X.

6. This implies,
∑

imi = 2 ·X. Which means that number of
i such that mi is odd is even!

3



Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake
hands an odd number of times is even.

Proof in six steps:

1. Define a relation R: iRj if i and j shook hands.

2. Is this relation symmetric (trans/refl.)? Draw its graph.

3. Let mi be the number of times i shakes hands. i.e., mi is
the number of directed edges going out from i.

4. Therefore, Total no. of directed edges =
∑

imi.

5. But now, let X be the total number of handshakes. Clearly
this is an integer. Total no. of directed edges = 2 ·X.

6. This implies,
∑

imi = 2 ·X. Which means that number of
i such that mi is odd is even!

3



Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake
hands an odd number of times is even.

Proof in six steps:

1. Define a relation R: iRj if i and j shook hands.

2. Is this relation symmetric (trans/refl.)? Draw its graph.

3. Let mi be the number of times i shakes hands. i.e., mi is
the number of directed edges going out from i.

4. Therefore, Total no. of directed edges =
∑

imi.

5. But now, let X be the total number of handshakes. Clearly
this is an integer. Total no. of directed edges = 2 ·X.

6. This implies,
∑

imi = 2 ·X. Which means that number of
i such that mi is odd is even!

3



Binomial theorem

Recall:

n∑
k=0

(
n

k

)
= 2n.

We generalize this...
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Binomial theorem

Binomial Theorem

Let x, y be variables and n ∈ Z≥0. Then,

(x + y)n =

n∑
j=0

(
n

j

)
xn−jyj

(H.W-1) Prove this by induction.
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Binomial theorem

Binomial Theorem

Let x, y be variables and n ∈ Z≥0. Then,

(x + y)n =

n∑
j=0

(
n

j

)
xn−jyj

Proof (combinatorial):

1. Consider any term xiyj , where i + j = n.

2. To get xiyj term in

(x + y)(x + y) · · · (x + y) (n times)

we need to pick j y′s from n sums and remaining x’s.
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1. Consider any term xiyj , where i + j = n.

2. To get xiyj term in

(x + y)(x + y) · · · (x + y) (n times)

we need to pick j y′s from n sums and remaining x’s.

3. Thus, the coefficient of this term = number of ways to get
this term = number of ways to pick j y’s from n elts =

(
n
j

)
.
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Binomial theorem

Binomial Theorem

Let x, y be variables and n ∈ Z≥0. Then,

(x + y)n =

n∑
j=0

(
n

j

)
xn−jyj

Corollaries:

1.
(
n
j

)
=
(

n
n−j
)
,

2.

n∑
j=0

(
n

j

)
2j = 3n.

3. No. of subsets of n-element set having even cardinality =
No. of subsets of n-element set having odd cardinality ?
(H.W-2)
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Pascal’s Triangle

A recursive way to compute binomial coefficients(
n + 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
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Fun with Pascal’s triangle

Some simple observations. Recall:
(
n+1
k

)
=
(

n
k−1

)
+
(
n
k

)
1. Row i adds up to 2i, Row i + 1 adds up to twice of row i.

2. Sequence of numbers, squares, cubes?
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Fun with Pascal’s triangle

Some simple observations. Recall:
(
n+1
k

)
=
(

n
k−1

)
+
(
n
k

)
1. Row i adds up to 2i, Row i + 1 adds up to twice of row i.

2. Sequence of numbers, squares, cubes?

3. Hockey stick patterns: (H.W-3)(
n+1
m

)
=
(
n
m

)
+
(
n−1
m−1

)
. . . +

(
n−m
0

)
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Fun with Pascal’s triangle

Some not so simple observations

I For some rows, all values in the row (except first and last)
are divisible by the second!
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Fun with Pascal’s triangle

Some not so simple observations

I For some rows, all values in the row (except first and last)
are divisible by the second!

I In fact, for all prime rows? why should p divide
(
p
r

)
, r < p?

I Corollary: 2p − 2 is a multiple of p, for any prime p.

I Interesting Ex.: Count no. of odd numbers in each row...
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An application to path counting

Map problems

From the top corner, how many shortest routes lead to a
particular junction?

O

∗

I Denote path sequences of {L,R}, e.g., RRRLL reaches ∗.
I Our path has 5 segments of which there must be 3 R’s.
I Bijection from set of paths to subsets of fixed size.
I No. of paths = ways of choosing 3 R’s out of 5 elts =

(
5
3

)
.

H.W-4: Prove/verify this formally.
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Permutations and Combinations with repetitions

How many ways can you select k objects from a set of n
elements?
I Depends on whether order is significant: If yes

permutations, else combinations.

I What if repetitions are allowed?

Order significant Order not significant

Repetitions
not allowed

n!
(n−k)!

(
n
k

)
Repetitions
are allowed

nk ??

8



Combinations with repetitions

Theorem

The no. of ways k elements can be chosen from n-elements,
when repetition is allowed is

(
n+k−1

k

)
=
(
n+k−1
n−1

)
.

1. Represent them as a list of n− 1 separators of k objects.

2. e.g., suppose we want to select 5 elts from a set of 4 with
repetitions. Then, ∗ ∗ | ∗ || ∗ ∗ represents: 2 of the first
element, 1 of the second, none of third and 2 of fourth.

3. There is a bijection between such lists and k-sets of
n-elements with repetitions allowed (why?).

4. Thus, question reduces to no. of ways to choose k stars or
n− 1 bars from a set of n− k + 1 positions =

(
n+k−1

k

)
.

I H.W-5: How many solutions does the equation
x1 + x2 + x3 + x4 = 17 have such that x1, x2, x3, x4 ∈ Z≥0 ?
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