CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Sept 16, 2023
Lecture 16 - Counting and Combinatorics

Counting and Combinatorics

Topics to be covered

- Basics of counting
- Product principle
- Sum principle
- Bijection principle
- Double counting

Counting and Combinatorics

Topics to be covered

- Basics of counting
- Product principle
- Sum principle
- Bijection principle
- Double counting
- Subsets, partitions, Permutations and combinations

1. Binomial coefficients and Binomial theorem
2. Pascal's triangle
3. Permutations and combinations with repetitions

Counting and Combinatorics

Topics to be covered

- Basics of counting
- Product principle
- Sum principle
- Bijection principle
- Double counting
- Subsets, partitions, Permutations and combinations

1. Binomial coefficients and Binomial theorem
2. Pascal's triangle
3. Permutations and combinations with repetitions

- Recurrence relations and generating functions
- Pigeonhole Principle and its extensions

Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

What will you count here?

Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.

Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.

3 . Let m_{i} be the number of times i shakes hands.

Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.
3. Let m_{i} be the number of times i shakes hands. i.e., m_{i} is the number of directed edges going out from i.

Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.
3. Let m_{i} be the number of times i shakes hands. i.e., m_{i} is the number of directed edges going out from i.
4. Therefore, Total no. of directed edges $=\sum_{i} m_{i}$.

Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.
3. Let m_{i} be the number of times i shakes hands. i.e., m_{i} is the number of directed edges going out from i.
4. Therefore, Total no. of directed edges $=\sum_{i} m_{i}$.
5. But now, let X be the total number of handshakes. Clearly this is an integer.

Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.
3. Let m_{i} be the number of times i shakes hands. i.e., m_{i} is the number of directed edges going out from i.
4. Therefore, Total no. of directed edges $=\sum_{i} m_{i}$.
5. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges $=2 \cdot X$.

Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in six steps:

1. Define a relation R : $i R j$ if i and j shook hands.
2. Is this relation symmetric (trans/refl.)? Draw its graph.
3. Let m_{i} be the number of times i shakes hands. i.e., m_{i} is the number of directed edges going out from i.
4. Therefore, Total no. of directed edges $=\sum_{i} m_{i}$.
5. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges $=2 \cdot X$.
6. This implies, $\sum_{i} m_{i}=2 \cdot X$. Which means that number of i such that m_{i} is odd is even!

Binomial theorem

Recall: $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.
We generalize this...

Binomial theorem

Recall: $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.
We generalize this...

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z} \geq 0$. Then,

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

$$
\begin{aligned}
& (x+y)^{1}=x+y \\
& (x+y)^{2}=(x+y)(x+y)=x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=(x+y)(x+y)^{2}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& (x+y)^{4}=(x+y)(x+y)^{3}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
\end{aligned}
$$

Binomial theorem

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z} \geq 0$. Then,

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

(H.W-1) Prove this by induction.

Binomial theorem

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z} \geq 0$. Then,

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

Proof (combinatorial):

1. Consider any term $x^{i} y^{j}$, where $i+j=n$.
2. To get $x^{i} y^{j}$ term in

$$
(x+y)(x+y) \cdots(x+y) \quad(n \text { times })
$$

we need to pick $j y^{\prime}$ s from n sums and remaining x 's.

Binomial theorem

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z} \geq 0$. Then,

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

Proof (combinatorial):

1. Consider any term $x^{i} y^{j}$, where $i+j=n$.
2. To get $x^{i} y^{j}$ term in

$$
(x+y)(x+y) \cdots(x+y) \quad(n \text { times })
$$

we need to pick $j y^{\prime} s$ from n sums and remaining x 's.
3. Thus, the coefficient of this term $=$ number of ways to get this term $=$ number of ways to pick $j y$'s from n elts $=\binom{n}{j}$.

Binomial theorem

Binomial Theorem
Let x, y be variables and $n \in \mathbb{Z} \geq 0$. Then,

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

Binomial theorem

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z} \geq 0$. Then,

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}
$$

Corollaries:

1. $\binom{n}{j}=\binom{n}{n-j}$,
2. $\sum_{j=0}^{n}\binom{n}{j} 2^{j}=3^{n}$.
3. No. of subsets of n-element set having even cardinality $=$ No. of subsets of n-element set having odd cardinality ? (H.W-2)

Pascal's Triangle

A recursive way to compute binomial coefficients

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

Pascal's Triangle

A recursive way to compute binomial coefficients

$$
\begin{aligned}
& \binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k} \\
& \binom{0}{0} \\
& \binom{1}{0}\binom{1}{1} \\
& \binom{2}{0}\binom{2}{1}\binom{2}{2} \\
& \binom{3}{0}\binom{3}{1}\binom{3}{2}\binom{3}{3} \\
& \binom{4}{0}\binom{4}{1}\binom{4}{2}\binom{4}{3}\binom{4}{1} \\
& \binom{5}{0}\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4}\binom{5}{5}
\end{aligned}
$$

Pascal's Triangle

A recursive way to compute binomial coefficients

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

Fun with Pascal's triangle

Some simple observations. Recall: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$

1. Row i adds up to 2^{i}, Row $i+1$ adds up to twice of row i.
2. Sequence of numbers, squares, cubes?

Fun with Pascal's triangle

Some simple observations. Recall: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$

1. Row i adds up to 2^{i}, Row $i+1$ adds up to twice of row i.
2. Sequence of numbers, squares, cubes?
3. Hockey stick patterns

Fun with Pascal's trianole

Some simple observations. Recall: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$

1. Row i adds up to 2^{i}, Row $i+1$ adds up to twice of row i.
2. Sequence of numbers, squares, cubes?
3. Hockey stick patterns: (H.W-3)

$$
\binom{n+1}{m}=\binom{n}{m}+\binom{n-1}{m-1} \ldots+\binom{n-m}{0}
$$

Fun with Pascal's triangle

Some not so simple observations

- For some rows, all values in the row (except first and last) are divisible by the second!

Fun with Pascal's triangle

Some not so simple observations

- For some rows, all values in the row (except first and last) are divisible by the second!
- In fact, for all prime rows? why should p divide $\binom{p}{r}, r<p$?

Fun with Pascal's triangle

Some not so simple observations

- For some rows, all values in the row (except first and last) are divisible by the second!
- In fact, for all prime rows? why should p divide $\binom{p}{r}, r<p$?
- Corollary: $2^{p}-2$ is a multiple of p, for any prime p.

Fun with Pascal's trianole

Some not so simple observations

- For some rows, all values in the row (except first and last) are divisible by the second!
- In fact, for all prime rows? why should p divide $\binom{p}{r}, r<p$?
- Corollary: $2^{p}-2$ is a multiple of p, for any prime p.
- Interesting Ex.: Count no. of odd numbers in each row...

An application to path counting

Map problems
From the top corner, how many shortest routes lead to a particular junction?

An application to path counting

Map problems
From the top corner, how many shortest routes lead to a particular junction?

- Denote path sequences of $\{L, R\}$, e.g., $R R R L L$ reaches $*$.

An application to path counting

Map problems

From the top corner, how many shortest routes lead to a particular junction?

- Denote path sequences of $\{L, R\}$, e.g., $R R R L L$ reaches $*$.
- Our path has 5 segments of which there must be 3 R's.

An application to path counting

Map problems

From the top corner, how many shortest routes lead to a particular junction?

- Denote path sequences of $\{L, R\}$, e.g., $R R R L L$ reaches $*$.
- Our path has 5 segments of which there must be 3 R's.
- Bijection from set of paths to subsets of fixed size.

An application to path counting

Map problems

From the top corner, how many shortest routes lead to a particular junction?

- Denote path sequences of $\{L, R\}$, e.g., $R R R L L$ reaches *.
- Our path has 5 segments of which there must be 3 R's.
- Bijection from set of paths to subsets of fixed size.
- No. of paths $=$ ways of choosing 3 R's out of 5 elts $=\binom{5}{3}$.

An application to path counting

Map problems

From the top corner, how many shortest routes lead to a particular junction?

- Denote path sequences of $\{L, R\}$, e.g., $R R R L L$ reaches *.
- Our path has 5 segments of which there must be 3 R's.
- Bijection from set of paths to subsets of fixed size.
- No. of paths = ways of choosing 3 R's out of 5 elts $=\binom{5}{3}$.
H.W-4: Prove/verify this formally.

Permutations and Combinations with repetitions

How many ways can you select k objects from a set of n elements?

- Depends on whether order is significant: If yes permutations, else combinations.
- What if repetitions are allowed?

	Order significant	Order not significant
Repetitions not allowed	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$
Repetitions are allowed	n^{k}	$? ?$

Combinations with repetitions

Theorem

The no. of ways k elements can be chosen from n-elements, when repetition is allowed is $\binom{n+k-1}{k}=\binom{n+k-1}{n-1}$.

Combinations with repetitions

Theorem

The no. of ways k elements can be chosen from n-elements, when repetition is allowed is $\binom{n+k-1}{k}=\binom{n+k-1}{n-1}$.

1. Represent them as a list of $n-1$ separators of k objects.

Combinations with repetitions

Theorem

The no. of ways k elements can be chosen from n-elements, when repetition is allowed is $\binom{n+k-1}{k}=\binom{n+k-1}{n-1}$.

1. Represent them as a list of $n-1$ separators of k objects.
2. e.g., suppose we want to select 5 elts from a set of 4 with repetitions. Then, $* * \mid * \| * *$ represents: 2 of the first element, 1 of the second, none of third and 2 of fourth.

Combinations with repetitions

Theorem

The no. of ways k elements can be chosen from n-elements, when repetition is allowed is $\binom{n+k-1}{k}=\binom{n+k-1}{n-1}$.

1. Represent them as a list of $n-1$ separators of k objects.
2. e.g., suppose we want to select 5 elts from a set of 4 with repetitions. Then, $* * \mid * \| * *$ represents: 2 of the first element, 1 of the second, none of third and 2 of fourth.
3. There is a bijection between such lists and k-sets of n-elements with repetitions allowed (why?).

Combinations with repetitions

Theorem

The no. of ways k elements can be chosen from n-elements, when repetition is allowed is $\binom{n+k-1}{k}=\binom{n+k-1}{n-1}$.

1. Represent them as a list of $n-1$ separators of k objects.
2. e.g., suppose we want to select 5 elts from a set of 4 with repetitions. Then, $* * \mid * \| * *$ represents: 2 of the first element, 1 of the second, none of third and 2 of fourth.
3. There is a bijection between such lists and k-sets of n-elements with repetitions allowed (why?).
4. Thus, question reduces to no. of ways to choose k stars or $n-1$ bars from a set of $n-k+1$ positions $=\binom{n+k-1}{k} . \square$

Combinations with repetitions

Theorem

The no. of ways k elements can be chosen from n-elements, when repetition is allowed is $\binom{n+k-1}{k}=\binom{n+k-1}{n-1}$.

1. Represent them as a list of $n-1$ separators of k objects.
2. e.g., suppose we want to select 5 elts from a set of 4 with repetitions. Then, $* * \mid * \| * *$ represents: 2 of the first element, 1 of the second, none of third and 2 of fourth.
3. There is a bijection between such lists and k-sets of n-elements with repetitions allowed (why?).
4. Thus, question reduces to no. of ways to choose k stars or $n-1$ bars from a set of $n-k+1$ positions $=\binom{n+k-1}{k} . \quad \square$

- H.W-5: How many solutions does the equation $x_{1}+x_{2}+x_{3}+x_{4}=17$ have such that $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{Z} \geq 0 ?$

