CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Sept 14, 2023
Lecture 17 - Counting and Combinatorics
Recurrence Relations

Logistics: Midsem

CS105 Midsem Exam

- Date and Time: Sept 23rd, Saturday, at 16:00 hrs, 4pm

Logistics: Midsem

CS105 Midsem Exam

- Date and Time: Sept 23rd, Saturday, at 16:00 hrs, 4pm
- Venue: LH 102, LH 301, LH 302

Logistics: Midsem

CS105 Midsem Exam

- Date and Time: Sept 23rd, Saturday, at 16:00 hrs, 4pm
- Venue: LH 102, LH 301, LH 302
- Duration: 2 hours (+compensatory time for PwD students)

Logistics: Midsem

CS105 Midsem Exam

- Date and Time: Sept 23rd, Saturday, at 16:00 hrs, 4pm
- Venue: LH 102, LH 301, LH 302
- Duration: 2 hours (+compensatory time for PwD students)

1. Be in the hall 15 min *before* start of the exam.
2. Bring pen, id card, water bottle (and nothing else).

Logistics: Midsem

CS105 Midsem Exam

- Date and Time: Sept 23rd, Saturday, at 16:00 hrs, 4pm
- Venue: LH 102, LH 301, LH 302
- Duration: 2 hours (+compensatory time for PwD students)

1. Be in the hall 15 min *before* start of the exam.
2. Bring pen, id card, water bottle (and nothing else).

Syllabus

First 16 lectures of course, till \& incl Tuesday Sept 12.

Logistics: Midsem

CS105 Midsem Exam

- Date and Time: Sept 23rd, Saturday, at 16:00 hrs, 4pm
- Venue: LH 102, LH 301, LH 302
- Duration: 2 hours (+compensatory time for PwD students)

1. Be in the hall 15 min *before* start of the exam.
2. Bring pen, id card, water bottle (and nothing else).

Syllabus

First 16 lectures of course, till \& incl Tuesday Sept 12.

- Propositions, proofs, induction,
- Basic structures: sets, functions, (un)countability, relations, posets, chains, anti-chains, lattices.
- Basic counting: counting principles, double counting, permutations \& combinations.

Logistics

- Extra help sessions on different BASIC topics being conducted by TAs.
- Only Basic material, NOT advanced.
- Please follow piazza and ask, if necessary.

Logistics

- Extra help sessions on different BASIC topics being conducted by TAs.
- Only Basic material, NOT advanced.
- Please follow piazza and ask, if necessary.

Also,

- Pattern of exam similar to quiz, some easy/basic, some hard.

Logistics

- Extra help sessions on different BASIC topics being conducted by TAs.
- Only Basic material, NOT advanced.
- Please follow piazza and ask, if necessary.

Also,

- Pattern of exam similar to quiz, some easy/basic, some hard.
- Solve more questions from Kenneth Rosen etc.

Logistics

- Extra help sessions on different BASIC topics being conducted by TAs.
- Only Basic material, NOT advanced.
- Please follow piazza and ask, if necessary.

Also,

- Pattern of exam similar to quiz, some easy/basic, some hard.
- Solve more questions from Kenneth Rosen etc.
- Few more extra/advanced questions may be released (no solutions, but can discuss on piazza).

Counting and Combinatorics

Topics

- Basics of counting
- Product principle
- Sum principle
- Bijection principle
- Double counting

Counting and Combinatorics

Topics

- Basics of counting
- Product principle
- Sum principle
- Bijection principle
- Double counting
- Subsets, partitions, Permutations and combinations

1. Binomial coefficients and Binomial theorem
2. Pascal's triangle
3. Permutations and combinations with repetitions

Estimating n !

How big is $n!?$

- It is clearly bigger than n and n^{2}.

Estimating n !

How big is $n!?$

- It is clearly bigger than n and n^{2}.
- Is it bigger than $2^{n}, n^{n}$?

Estimating n !

How big is $n!?$

- It is clearly bigger than n and n^{2}.
- Is it bigger than $2^{n}, n^{n}$?
- Easy to see: for all $n \geq 4$,

$$
2^{n} \leq n!\leq n^{n}
$$

Estimating n !

How big is $n!?$

- It is clearly bigger than n and n^{2}.
- Is it bigger than $2^{n}, n^{n}$?
- Easy to see: for all $n \geq 4$,

$$
2^{n} \leq n!\leq n^{n}
$$

- Can we do better?

Can we quantify how much more n^{n} is compared to $n!$?

Estimating n !

How big is $n!?$

- It is clearly bigger than n and n^{2}.
- Is it bigger than $2^{n}, n^{n}$?
- Easy to see: for all $n \geq 4$,

$$
2^{n} \leq n!\leq n^{n}
$$

- Can we do better?

Can we quantify how much more n^{n} is compared to $n!$?
Theorem (Stirling's Approximation)

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq n e\left(\frac{n}{e}\right)^{n}
$$

where e is the base of natural logarithms, $\log (e)=e^{\log (e)}=1$.

Approximating the factorial

Theorem (Stirling's Approximation)

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq n e\left(\frac{n}{e}\right)^{n}
$$

where e is the base of natural logarithms, $\log (e)=e^{\log (e)}=1$.

Approximating the factorial

Theorem (Stirling's Approximation)

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq n e\left(\frac{n}{e}\right)^{n}
$$

where e is the base of natural logarithms, $\log (e)=e^{\log (e)}=1$.
Proof: Let $S=\log (n!)=\sum_{i=1}^{n} \log (i)$. Thus, $e^{S}=n!$

Approximating the factorial

Theorem (Stirling's Approximation)

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq n e\left(\frac{n}{e}\right)^{n}
$$

where e is the base of natural logarithms, $\log (e)=e^{\log (e)}=1$.

Proof: Let $S=\log (n!)=\sum_{i=1}^{n} \log (i)$. Thus, $e^{S}=n!$

Now, we relate it to natural log function as shown in the figure.

Approximating the factorial

Theorem (Stirling's Approximation)

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq n e\left(\frac{n}{e}\right)^{n}
$$

where e is the base of natural logarithms, $\log (e)=e^{\log (e)}=1$.
Proof: Let $S=\log (n!)=\sum_{i=1}^{n} \log (i)$. Thus, $e^{S}=n$!

$$
\sum_{i=1}^{n} \log (i) \geq \int_{1}^{n} \log (x) d x \geq \sum_{i=1}^{n-1} \log (i)
$$

Approximating the factorial

Theorem (Stirling's Approximation)

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq n e\left(\frac{n}{e}\right)^{n}
$$

where e is the base of natural logarithms, $\log (e)=e^{\log (e)}=1$.
Proof: Let $S=\log (n!)=\sum_{i=1}^{n} \log (i)$. Thus, $e^{S}=n$!

$$
\begin{aligned}
\sum_{i=1}^{n} \log (i) & \geq \int_{1}^{n} \log (x) d x \geq \sum_{i=1}^{n-1} \log (i) \\
S & \geq x \log (x)-\left.x\right|_{1} ^{n} \geq S-\log (n)
\end{aligned}
$$

Approximating the factorial

Theorem (Stirling's Approximation)

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq n e\left(\frac{n}{e}\right)^{n}
$$

where e is the base of natural logarithms, $\log (e)=e^{\log (e)}=1$.
Proof: Let $S=\log (n!)=\sum_{i=1}^{n} \log (i)$. Thus, $e^{S}=n$!

$$
\begin{aligned}
\sum_{i=1}^{n} \log (i) & \geq \int_{1}^{n} \log (x) d x \geq \sum_{i=1}^{n-1} \log (i) \\
S & \geq x \log (x)-\left.x\right|_{1} ^{n} \geq S-\log (n) \\
S & \geq n \log (n)-n+1 \geq S-\log (n)
\end{aligned}
$$

Approximating the factorial

Theorem (Stirling's Approximation)

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq n e\left(\frac{n}{e}\right)^{n}
$$

where e is the base of natural logarithms, $\log (e)=e^{\log (e)}=1$.
Proof: Let $S=\log (n!)=\sum_{i=1}^{n} \log (i)$. Thus, $e^{S}=n$!

$$
\begin{aligned}
\sum_{i=1}^{n} \log (i) & \geq \int_{1}^{n} \log (x) d x \geq \sum_{i=1}^{n-1} \log (i) \\
S & \geq x \log (x)-\left.x\right|_{1} ^{n} \geq S-\log (n) \\
S & \geq n \log (n)-n+1 \geq S-\log (n)
\end{aligned}
$$

Raising both sides to power of e we get

- l.h.s. $n!\geq e^{n \log (n)-n+1}=(n / e)^{n} e$ and

Approximating the factorial

Theorem (Stirling's Approximation)

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq n e\left(\frac{n}{e}\right)^{n}
$$

where e is the base of natural logarithms, $\log (e)=e^{\log (e)}=1$.
Proof: Let $S=\log (n!)=\sum_{i=1}^{n} \log (i)$. Thus, $e^{S}=n$!

$$
\begin{aligned}
\sum_{i=1}^{n} \log (i) & \geq \int_{1}^{n} \log (x) d x \geq \sum_{i=1}^{n-1} \log (i) \\
S & \geq x \log (x)-\left.x\right|_{1} ^{n} \geq S-\log (n) \\
S & \geq n \log (n)-n+1 \geq S-\log (n)
\end{aligned}
$$

Raising both sides to power of e we get

- l.h.s. $n!\geq e^{n \log (n)-n+1}=(n / e)^{n} e$ and
- r.h.s. $n!\leq e^{(n+1) \log (n)-n+1}=n^{n+1} / e^{n-1}=n e(n / e)^{n}$.

Next: Recurrence relations and generating functions

Recall: No. of subsets of a set of n elements
How many subsets does a set A of n elements have?

- Induction
- Product principle: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (n-times).
- Bijection: between $\mathcal{P}(X)$ and n-length $\{0,1\}$-sequences.
- Sum principle: Subsets of size $0+$ subsets of size $1+\ldots+$ subsets of size $n=$ Total number of subsets.

Next: Recurrence relations and generating functions

Recall: No. of subsets of a set of n elements
How many subsets does a set A of n elements have?

- Induction
- Product principle: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (n-times).
- Bijection: between $\mathcal{P}(X)$ and n-length $\{0,1\}$-sequences.
- Sum principle: Subsets of size $0+$ subsets of size $1+\ldots+$ subsets of size $n=$ Total number of subsets.
- Recurrence: $F(n)=2 \cdot F(n-1), F(0)=1$.

Next: Recurrence relations and generating functions

Recall: No. of subsets of a set of n elements
How many subsets does a set A of n elements have?

- Induction
- Product principle: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (n-times).
- Bijection: between $\mathcal{P}(X)$ and n-length $\{0,1\}$-sequences.
- Sum principle: Subsets of size $0+$ subsets of size $1+\ldots+$ subsets of size $n=$ Total number of subsets.
- Recurrence: $F(n)=2 \cdot F(n-1), F(0)=1$.

Next: Recurrence relations and generating functions

Recall: No. of subsets of a set of n elements
How many subsets does a set A of n elements have?

- Induction
- Product principle: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (n-times).
- Bijection: between $\mathcal{P}(X)$ and n-length $\{0,1\}$-sequences.
- Sum principle: Subsets of size $0+$ subsets of size $1+\ldots+$ subsets of size $n=$ Total number of subsets.
- Recurrence: $F(n)=2 \cdot F(n-1), F(0)=1$.

But how do you solve it?

Another example of recurrence: The Fibonacci Sequence

- Fibonacci sequence: $1,1,2,3,5,8,13,21, \ldots$

Another example of recurrence: The Fibonacci Sequence

- Fibonacci sequence: $1,1,2,3,5,8,13,21, \ldots$
- Recurrence relation: $u_{n}=u_{n-1}+u_{n-2}$ where $u_{1}=u_{0}=1$

Another example of recurrence: The Fibonacci Sequence

- Fibonacci sequence: $1,1,2,3,5,8,13,21, \ldots$
- Recurrence relation: $u_{n}=u_{n-1}+u_{n-2}$ where $u_{1}=u_{0}=1$
- But rabbits die!

Another example of recurrence: The Fibonacci Sequence

- Fibonacci sequence: $1,1,2,3,5,8,13,21, \ldots$
- Recurrence relation: $u_{n}=u_{n-1}+u_{n-2}$ where $u_{1}=u_{0}=1$
- But rabbits die!
- Consider $u_{n}=u_{n-1}+u_{n-2}-u_{n-3}$ where $u_{2}=2, u_{1}=u_{0}=1$

Recurrence and linear recurrence relations

Definition

- A recurrence relation for a sequence is an equation that expresses its $n^{\text {th }}$ term using one or more of the previous terms of the sequence.
- A linear recurrence relation is of the form

$$
u_{n}=a_{k-1} u_{n-1}+\ldots+a_{1} u_{n-k+1}+a_{0} u_{n-k}
$$

where $a_{0}, \ldots, a_{k-1} \in \mathbb{R}, k \in \mathbb{N}$ are constants.

Recurrence and linear recurrence relations

Definition

- A recurrence relation for a sequence is an equation that expresses its $n^{\text {th }}$ term using one or more of the previous terms of the sequence.
- A linear recurrence relation is of the form

$$
u_{n}=a_{k-1} u_{n-1}+\ldots+a_{1} u_{n-k+1}+a_{0} u_{n-k}
$$

where $a_{0}, \ldots, a_{k-1} \in \mathbb{R}, k \in \mathbb{N}$ are constants.

- k is called the degree/depth of the sequence.
- The first few (e.g., k elements u_{0}, \ldots, u_{k-1}) are initial conditions and they determine the whole sequence.

Some more examples of recurrences

How many bit strings of length n are there that do not have two consecutive 0's?

- Find a recurrence relation for this
- Give the initial conditions
- How many such bit strings are there of length 7 ?

Some more examples of recurrences

How many bit strings of length n are there that do not have two consecutive 0's?

- Find a recurrence relation for this
- Give the initial conditions
- How many such bit strings are there of length 7 ?

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

Some more examples of recurrences

How many bit strings of length n are there that do not have two consecutive 0's?

- Find a recurrence relation for this
- Give the initial conditions
- How many such bit strings are there of length 7?

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

- Example: $n=3:((a+b)+c),(a+(b+c))$

Some more examples of recurrences

How many bit strings of length n are there that do not have two consecutive 0's?

- Find a recurrence relation for this
- Give the initial conditions
- How many such bit strings are there of length 7?

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

- Example: $n=3:((a+b)+c),(a+(b+c))$
- $n=4:(((a+b)+c)+d),((a+b)+(c+d)),((a+(b+c))+d), \ldots$

Some more examples of recurrences

How many bit strings of length n are there that do not have two consecutive 0's?

- Find a recurrence relation for this
- Give the initial conditions
- How many such bit strings are there of length 7?

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

- Example: $n=3:((a+b)+c),(a+(b+c))$
- $n=4:(((a+b)+c)+d),((a+b)+(c+d)),((a+(b+c))+d), \ldots$ In general, let $C(n)$ be the number of ways of doing this.

An aside: find the Fibonacci sequence!

- $F(n)=F(n-1)+F(n-2)$.
- $1,1,2,3,5,8,13, \ldots$.
- Can you observe the sum of which terms in the Pascal's triangle gives rise to the terms of the Fibonacci sequence?

