
CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Sept 14, 2023
Lecture 17 – Counting and Combinatorics

Recurrence Relations
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Logistics: Midsem

CS105 Midsem Exam
I Date and Time: Sept 23rd, Saturday, at 16:00 hrs, 4pm

I Venue: LH 102, LH 301, LH 302

I Duration: 2 hours (+compensatory time for PwD students)

1. Be in the hall 15min *before* start of the exam.

2. Bring pen, id card, water bottle (and nothing else).

Syllabus

First 16 lectures of course, till & incl Tuesday Sept 12.

I Propositions, proofs, induction,

I Basic structures: sets, functions, (un)countability,
relations, posets, chains, anti-chains, lattices.

I Basic counting: counting principles, double counting,
permutations & combinations.
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Logistics

I Extra help sessions on different BASIC topics being
conducted by TAs.

I Only Basic material, NOT advanced.

I Please follow piazza and ask, if necessary.

Also,

I Pattern of exam similar to quiz, some easy/basic, some
hard.

I Solve more questions from Kenneth Rosen etc.

I Few more extra/advanced questions may be released (no
solutions, but can discuss on piazza).
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Counting and Combinatorics

Topics

I Basics of counting
I Product principle
I Sum principle
I Bijection principle
I Double counting

I Subsets, partitions, Permutations and combinations

1. Binomial coefficients and Binomial theorem
2. Pascal’s triangle
3. Permutations and combinations with repetitions

4



Counting and Combinatorics

Topics

I Basics of counting
I Product principle
I Sum principle
I Bijection principle
I Double counting

I Subsets, partitions, Permutations and combinations

1. Binomial coefficients and Binomial theorem
2. Pascal’s triangle
3. Permutations and combinations with repetitions

4



Estimating n!

How big is n!?

I It is clearly bigger than n and n2.

I Is it bigger than 2n, nn?

I Easy to see: for all n ≥ 4,

2n ≤ n! ≤ nn

I Can we do better?
Can we quantify how much more nn is compared to n!?

Theorem (Stirling’s Approximation)

e
(n
e

)n
≤ n! ≤ ne

(n
e

)n
where e is the base of natural logarithms, log(e) = elog(e) = 1.
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Approximating the factorial

Theorem (Stirling’s Approximation)

e
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Theorem (Stirling’s Approximation)

e
(n
e

)n
≤ n! ≤ ne

(n
e

)n
where e is the base of natural logarithms, log(e) = elog(e) = 1.

Proof: Let S = log(n!) =
∑n

i=1 log(i). Thus, eS = n!
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Approximating the factorial

Theorem (Stirling’s Approximation)

e
(n
e

)n
≤ n! ≤ ne

(n
e

)n
where e is the base of natural logarithms, log(e) = elog(e) = 1.

Proof: Let S = log(n!) =
∑n

i=1 log(i). Thus, eS = n!

Now, we relate it to natural log function as shown in the figure.

n∑
i=1

log(i) ≥
∫ n

1
log(x)dx ≥

n−1∑
i=1

log(i)
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Raising both sides to power of e we get

I l.h.s. n! ≥ en log(n)−n+1 = (n/e)ne and

6



Approximating the factorial

Theorem (Stirling’s Approximation)

e
(n
e

)n
≤ n! ≤ ne

(n
e

)n
where e is the base of natural logarithms, log(e) = elog(e) = 1.

Proof: Let S = log(n!) =
∑n

i=1 log(i). Thus, eS = n!
n∑

i=1

log(i) ≥
∫ n

1
log(x)dx ≥

n−1∑
i=1

log(i)

S ≥ x log(x)− x|n1 ≥ S − log(n)

S ≥ n log(n)− n + 1 ≥ S − log(n).

Raising both sides to power of e we get

I l.h.s. n! ≥ en log(n)−n+1 = (n/e)ne and

I r.h.s. n! ≤ e(n+1) log(n)−n+1 = nn+1/en−1 = ne(n/e)n.
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Next: Recurrence relations and generating functions

Recall: No. of subsets of a set of n elements

How many subsets does a set A of n elements have?

I Induction

I Product principle: two choices for each element, hence
2 · 2 · · · 2 · 2 (n-times).

I Bijection: between P(X) and n-length {0, 1}-sequences.

I Sum principle: Subsets of size 0 + subsets of size 1 + . . . +
subsets of size n = Total number of subsets.
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Recall: No. of subsets of a set of n elements

How many subsets does a set A of n elements have?

I Induction

I Product principle: two choices for each element, hence
2 · 2 · · · 2 · 2 (n-times).

I Bijection: between P(X) and n-length {0, 1}-sequences.

I Sum principle: Subsets of size 0 + subsets of size 1 + . . . +
subsets of size n = Total number of subsets.

I Recurrence: F (n) = 2 · F (n− 1), F (0) = 1.

But how do you solve it?
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Another example of recurrence: The Fibonacci Sequence

I Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . .

I Recurrence relation: un = un−1 + un−2 where u1 = u0 = 1

I But rabbits die!

I Consider un = un−1 + un−2 − un−3 where
u2 = 2, u1 = u0 = 1
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Recurrence and linear recurrence relations

Definition
I A recurrence relation for a sequence is an equation that

expresses its nth term using one or more of the previous
terms of the sequence.

I A linear recurrence relation is of the form

un = ak−1un−1 + . . . + a1un−k+1 + a0un−k

where a0, . . . , ak−1 ∈ R, k ∈ N are constants.

I k is called the degree/depth of the sequence.

I The first few (e.g., k elements u0, . . . , uk−1) are initial
conditions and they determine the whole sequence.
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Some more examples of recurrences

How many bit strings of length n are there that do not
have two consecutive 0’s?
I Find a recurrence relation for this

I Give the initial conditions

I How many such bit strings are there of length 7?

How many ways are there to bracket a sum of n terms so
that it can be computed by adding two numbers at a time?

I Example: n = 3 : ((a + b) + c), (a + (b + c))

I n = 4 : (((a+b)+c)+d), ((a+b)+(c+d)), ((a+(b+c))+d), ...
In general, let C(n) be the number of ways of doing this.
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An aside: find the Fibonacci sequence!

I F (n) = F (n− 1) + F (n− 2).

I 1, 1, 2, 3, 5, 8, 13, ....

I Can you observe the sum of which terms in the Pascal’s
triangle gives rise to the terms of the Fibonacci sequence?
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