
CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Sept 26, 2023
Lecture 19 – Counting and Combinatorics

Solving Recurrence relations via generating functions
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Last few weeks

Basic counting techniques and applications

1. Sum and product, bijection, double counting principles

2. Binomial coefficients and binomial theorem, Pascal’s
triangle

3. Permutations and combinations with/without repetitions

4. Counting subsets, relations, Handshake lemma

5. Stirling’s approximation: Estimating n!

6. Recurrence relations and one method to solve them.

Today

Solving recurrence relations via generating functions.
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Solving general linear recurrence sequences

I (C.W) Find a solution for an = an−1 + 2an−2 with a0 = 2,
a1 = 7?

I Find a solution for an = 6an−1 − 9an−2, with
a0 = 1, a1 = 6? Can you apply the same method for this?
What went wrong?

I Recall the recurrence for Catalan Numbers:

C(n) =

n−1∑
i=1

C(i)C(n− i) for n > 1, C(0) = C(1) = 1.

No. of ways to bracket a sum of n terms s.t. it can be
computed by adding two numbers at a time?

This method does not work if we have repeated roots (this can
be fixed!) and non-linear recurrences.

Reading assignment

Read examples/generalizations from Sections 6.1 and 6.2 from
Rosen’s book (6th Edition).

We next consider a method of much wider applicability...
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Solving recurrence relations

By solving, we mean give a closed-form expression for nth term.

Fibonacci rec ∀n ≥ 2, Fn = Fn−1 + Fn−2, F0 = F1 = 1

Proof method 1 (for linear recurrences: try Fn = αn!)

1. αn = αn−1 + αn−2 implies αn−2(α2 − α− 1) = 0.

2. So if α2 − α− 1 = 0, the recurrence holds for all n.

3. Solving, α = 1+
√
5

2 , β = 1−
√
5

2

4. Thus, general solution is Fn = a(1+
√
5

2 )n + b(1−
√
5

2 )n.

5. Use F0 and F1 – initial conditions: a =
√
5+1
2
√
5

, b =
√
5−1
2
√
5

Thus, Fn =
√
5+1
2
√
5

(1+
√
5

2
)n +

√
5−1
2
√
5

(1−
√
5

2
)n.

This method fails for repeated roots/non-linear recurrences.

Reading assignment: how to tackle repeated roots case.

Read Sections 6.1 and 6.2 from Rosen’s book (6th Edition)

We next consider a method of much wider applicability...
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Proof Method 2: Using generating functions

Fibonacci recurrence relation

For n ≥ 2, Fn = Fn−1 + Fn−2, F0 = F1 = 1.
Compute Fn in terms of n.

I Consider the power series... φ(t) =

∞∑
n=0

F (n)tn.
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Proof Method 2: Using generating functions

I φ(t) = 1
1−t−t2

= 1
(1−αt)(1−βt)=

a
1−αt + b

1−βt

I Solving we get α = 1+
√
5

2 , β = 1−
√
5

2 , a =
√
5+1
2
√
5
, b =

√
5−1
2
√
5

I Now φ(t) = a(1 + αt+ α2t2 + . . .) + b(1 + βt+ β2t2 + . . .)

I Equating coefficients of tn we get Fn = aαn + bβn.

thus, as before

F (n) =

√
5 + 1

2
√

5

(
1 +
√

5

2

)n
+

√
5− 1

2
√

5

(
1−
√

5

2

)n

6



Proof Method 2: Using generating functions

I φ(t) = 1
1−t−t2 = 1

(1−αt)(1−βt)

= a
1−αt + b

1−βt

I Solving we get α = 1+
√
5

2 , β = 1−
√
5

2 , a =
√
5+1
2
√
5
, b =

√
5−1
2
√
5

I Now φ(t) = a(1 + αt+ α2t2 + . . .) + b(1 + βt+ β2t2 + . . .)

I Equating coefficients of tn we get Fn = aαn + bβn.

thus, as before

F (n) =

√
5 + 1

2
√

5

(
1 +
√

5

2

)n
+

√
5− 1

2
√

5

(
1−
√

5

2

)n

6



Proof Method 2: Using generating functions

I φ(t) = 1
1−t−t2 = 1

(1−αt)(1−βt)=
a

1−αt + b
1−βt

I Solving we get α = 1+
√
5

2 , β = 1−
√
5

2 , a =
√
5+1
2
√
5
, b =

√
5−1
2
√
5

I Now φ(t) = a(1 + αt+ α2t2 + . . .) + b(1 + βt+ β2t2 + . . .)

I Equating coefficients of tn we get Fn = aαn + bβn.

thus, as before

F (n) =

√
5 + 1

2
√

5

(
1 +
√

5

2

)n
+

√
5− 1

2
√

5

(
1−
√

5

2

)n

6



Proof Method 2: Using generating functions

I φ(t) = 1
1−t−t2 = 1

(1−αt)(1−βt)=
a

1−αt + b
1−βt

I Solving we get α = 1+
√
5

2 , β = 1−
√
5

2 , a =
√
5+1
2
√
5
, b =

√
5−1
2
√
5

I Now φ(t) = a(1 + αt+ α2t2 + . . .) + b(1 + βt+ β2t2 + . . .)

I Equating coefficients of tn we get Fn = aαn + bβn.

thus, as before

F (n) =

√
5 + 1

2
√

5

(
1 +
√

5

2

)n
+

√
5− 1

2
√

5

(
1−
√

5

2

)n

6



Proof Method 2: Using generating functions

I φ(t) = 1
1−t−t2 = 1

(1−αt)(1−βt)=
a

1−αt + b
1−βt

I Solving we get α = 1+
√
5

2 , β = 1−
√
5

2 , a =
√
5+1
2
√
5
, b =

√
5−1
2
√
5

I Now φ(t) = a(1 + αt+ α2t2 + . . .) + b(1 + βt+ β2t2 + . . .)

I Equating coefficients of tn we get Fn = aαn + bβn.

thus, as before

F (n) =

√
5 + 1

2
√

5

(
1 +
√

5

2

)n
+

√
5− 1

2
√

5

(
1−
√

5

2

)n

6



Proof Method 2: Using generating functions

I φ(t) = 1
1−t−t2 = 1

(1−αt)(1−βt)=
a

1−αt + b
1−βt

I Solving we get α = 1+
√
5

2 , β = 1−
√
5

2 , a =
√
5+1
2
√
5
, b =

√
5−1
2
√
5

I Now φ(t) = a(1 + αt+ α2t2 + . . .) + b(1 + βt+ β2t2 + . . .)

I Equating coefficients of tn we get Fn = aαn + bβn.

thus, as before

F (n) =

√
5 + 1

2
√

5

(
1 +
√

5

2

)n
+

√
5− 1

2
√

5

(
1−
√

5

2

)n

6



Properties of generating functions

Definition

The (ordinary) generating function for a sequence a0, a1, . . . ∈ R
is the infinite series φ(x) =

∑∞
k=0 akx

k.

I Let f(x) =
∑∞

k=0 akx
k, g(x) =

∑∞
k=0 bkx

k. Then

1. If f(x) = g(x), then ak = bk for all k.
2. f(x) + g(x) =

∑∞
k=0(ak + bk)xk,

3. f(x)g(x) =
∑∞

k=0(
∑k

j=0 ajbk−j)x
k,

4. d
dx (
∑∞

k=0 akx
k) =

∑∞
k=1(kak)xk−1

I Let u ∈ R, k ∈ Z≥0, Then extended binomial coefficient
(
u
k

)
is defined as

(
u
k

)
= u(u−1)...(u−k+1)

k! if k > 0 and = 1 if k = 0.

I What if u = −n for n ∈ N?

The extended binomial theorem

Let u ∈ R, (1 + x)u =
∑∞

k=0

(
u
k

)
xk.

If you don’t like this, take x ∈ R, |x| < 1.
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k,

4. d
dx (
∑∞

k=0 akx
k) =

∑∞
k=1(kak)xk−1

I Let u ∈ R, k ∈ Z≥0, Then extended binomial coefficient
(
u
k

)
is defined as

(
u
k

)
= u(u−1)...(u−k+1)

k! if k > 0 and = 1 if k = 0.

I What if u = −n for n ∈ N?

The extended binomial theorem

Let u ∈ R, (1 + x)u =
∑∞

k=0

(
u
k

)
xk.

If you don’t like this, take x ∈ R, |x| < 1.
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Simple examples using generating functions

Standard identities:

I 1
1−ax =

∑∞
k=0 a

kxk

I 1
1−xr =

∑∞
k=0 x

rk

I ex =
∑∞

k=0
xk

k!

Class work:

1. Solve the recurrence ak = 4ak−1 with a0 = 3.

2. Solve the recurrence ak = 8ak−1 + 10k−1 with
a0 = 1, a1 = 9.
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Other applications of generating functions

I What is the number of ways ak of selecting k elements from
an n element set if repetitions are allowed?

I Let φ(x) =
∑∞

k=0 akx
k.

I Observe that φ(x) = (1 + x+ x2 + . . .)n = (1− x)−n

I Expand this by the extended binomial theorem and
compare coefficients of xk.

I ak =
(−n

k

)
(−1)k = (−1)k

(
n+k−1

k

)
(−1)k =

(
n+k−1

k

)
.

I (H.W) What if there must be ≥ 1 element of each type?

I Proving binomial identities: Show that
∑n

k=0

(
n
k

)2
=
(
2n
n

)
.

I Compare coefficients of xn in (1 + x)2n = ((1 + x)n)2.

I (H.W) Write a recurrence for the number of derrangements.
That is, no. of ways to arrange n letters into n addressed
envelopes such that no letter goes to the correct envelope.

I (H.W) How many ways can a convex n-sided polygon be
cut into triangles by adding non-intersecting diagonals (i.e.,
connecting vertices with non-crossing lines)? Write a
recurrence and solve it!
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