CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Sept 26, 2023
Lecture 19 - Counting and Combinatorics
Solving Recurrence relations via generating functions

Last few weeks

Basic counting techniques and applications

1. Sum and product, bijection, double counting principles
2. Binomial coefficients and binomial theorem, Pascal's triangle
3. Permutations and combinations with/without repetitions
4. Counting subsets, relations, Handshake lemma
5. Stirling's approximation: Estimating n !
6. Recurrence relations and one method to solve them.

Last few weeks

Basic counting techniques and applications

1. Sum and product, bijection, double counting principles
2. Binomial coefficients and binomial theorem, Pascal's triangle
3. Permutations and combinations with/without repetitions
4. Counting subsets, relations, Handshake lemma
5. Stirling's approximation: Estimating n !
6. Recurrence relations and one method to solve them.

Today

Solving recurrence relations via generating functions.

Solving general linear recurrence sequences

- (C.W) Find a solution for $a_{n}=a_{n-1}+2 a_{n-2}$ with $a_{0}=2$, $a_{1}=7$?

Solving general linear recurrence sequences

- (C.W) Find a solution for $a_{n}=a_{n-1}+2 a_{n-2}$ with $a_{0}=2$, $a_{1}=7$?
- Find a solution for $a_{n}=6 a_{n-1}-9 a_{n-2}$, with $a_{0}=1, a_{1}=6$? Can you apply the same method for this?

Solving general linear recurrence sequences

- (C.W) Find a solution for $a_{n}=a_{n-1}+2 a_{n-2}$ with $a_{0}=2$, $a_{1}=7$?
- Find a solution for $a_{n}=6 a_{n-1}-9 a_{n-2}$, with $a_{0}=1, a_{1}=6$? Can you apply the same method for this? What went wrong?
- Recall the recurrence for Catalan Numbers:

$$
C(n)=\sum_{i=1}^{n-1} C(i) C(n-i) \text { for } n>1, C(0)=C(1)=1
$$

No. of ways to bracket a sum of n terms s.t. it can be computed by adding two numbers at a time?

Solving general linear recurrence sequences

- (C.W) Find a solution for $a_{n}=a_{n-1}+2 a_{n-2}$ with $a_{0}=2$, $a_{1}=7$?
- Find a solution for $a_{n}=6 a_{n-1}-9 a_{n-2}$, with $a_{0}=1, a_{1}=6$? Can you apply the same method for this? What went wrong?
- Recall the recurrence for Catalan Numbers:

$$
C(n)=\sum_{i=1}^{n-1} C(i) C(n-i) \text { for } n>1, C(0)=C(1)=1
$$

No. of ways to bracket a sum of n terms s.t. it can be computed by adding two numbers at a time?
This method does not work if we have repeated roots (this can be fixed!) and non-linear recurrences.

Solving general linear recurrence sequences

- (C.W) Find a solution for $a_{n}=a_{n-1}+2 a_{n-2}$ with $a_{0}=2$, $a_{1}=7$?
- Find a solution for $a_{n}=6 a_{n-1}-9 a_{n-2}$, with $a_{0}=1, a_{1}=6$? Can you apply the same method for this? What went wrong?
- Recall the recurrence for Catalan Numbers:

$$
C(n)=\sum_{i=1}^{n-1} C(i) C(n-i) \text { for } n>1, C(0)=C(1)=1
$$

No. of ways to bracket a sum of n terms s.t. it can be computed by adding two numbers at a time?
This method does not work if we have repeated roots (this can be fixed!) and non-linear recurrences.

Reading assignment

Read examples/generalizations from Sections 6.1 and 6.2 from Rosen's book (6th Edition).

Solving general linear recurrence sequences

- (C.W) Find a solution for $a_{n}=a_{n-1}+2 a_{n-2}$ with $a_{0}=2$, $a_{1}=7$?
- Find a solution for $a_{n}=6 a_{n-1}-9 a_{n-2}$, with $a_{0}=1, a_{1}=6$? Can you apply the same method for this? What went wrong?
- Recall the recurrence for Catalan Numbers:

$$
C(n)=\sum_{i=1}^{n-1} C(i) C(n-i) \text { for } n>1, C(0)=C(1)=1
$$

No. of ways to bracket a sum of n terms s.t. it can be computed by adding two numbers at a time?
This method does not work if we have repeated roots (this can be fixed!) and non-linear recurrences.

Reading assignment

Read examples/generalizations from Sections 6.1 and 6.2 from Rosen's book (6th Edition).

We next consider a method of much wider applicability...

Solving recurrence relations

By solving, we mean give a closed-form expression for $n^{\text {th }}$ term.

Solving recurrence relations

Fibonacci rec $\forall n \geq 2, F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1$

Solving recurrence relations

Fibonacci rec $\forall n \geq 2, F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1$

Proof method 1 (for linear recurrences: try $F_{n}=\alpha^{n}!$)

1. $\alpha^{n}=\alpha^{n-1}+\alpha^{n-2}$ implies $\alpha^{n-2}\left(\alpha^{2}-\alpha-1\right)=0$.
2. So if $\alpha^{2}-\alpha-1=0$, the recurrence holds for all n.
3. Solving, $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$
4. Thus, general solution is $F_{n}=a\left(\frac{1+\sqrt{5}}{2}\right)^{n}+b\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
5. Use F_{0} and F_{1} - initial conditions: $a=\frac{\sqrt{5}+1}{2 \sqrt{5}}, b=\frac{\sqrt{5}-1}{2 \sqrt{5}}$

Solving recurrence relations

Fibonacci rec $\forall n \geq 2, F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1$

Proof method 1 (for linear recurrences: try $F_{n}=\alpha^{n}$!)

1. $\alpha^{n}=\alpha^{n-1}+\alpha^{n-2}$ implies $\alpha^{n-2}\left(\alpha^{2}-\alpha-1\right)=0$.
2. So if $\alpha^{2}-\alpha-1=0$, the recurrence holds for all n.
3. Solving, $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$
4. Thus, general solution is $F_{n}=a\left(\frac{1+\sqrt{5}}{2}\right)^{n}+b\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
5. Use F_{0} and F_{1} - initial conditions: $a=\frac{\sqrt{5}+1}{2 \sqrt{5}}, b=\frac{\sqrt{5}-1}{2 \sqrt{5}}$

$$
\text { Thus, } F_{n}=\frac{\sqrt{5}+1}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{\sqrt{5}-1}{2 \sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \text {. }
$$

Solving recurrence relations

Fibonacci rec $\forall n \geq 2, F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1$

Proof method 1 (for linear recurrences: try $F_{n}=\alpha^{n}!$)

1. $\alpha^{n}=\alpha^{n-1}+\alpha^{n-2}$ implies $\alpha^{n-2}\left(\alpha^{2}-\alpha-1\right)=0$.
2. So if $\alpha^{2}-\alpha-1=0$, the recurrence holds for all n.
3. Solving, $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$
4. Thus, general solution is $F_{n}=a\left(\frac{1+\sqrt{5}}{2}\right)^{n}+b\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
5. Use F_{0} and F_{1} - initial conditions: $a=\frac{\sqrt{5}+1}{2 \sqrt{5}}, b=\frac{\sqrt{5}-1}{2 \sqrt{5}}$

$$
\text { Thus, } F_{n}=\frac{\sqrt{5}+1}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{\sqrt{5}-1}{2 \sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \text {. }
$$

This method fails for repeated roots/non-linear recurrences.

Solving recurrence relations

Fibonacci rec $\forall n \geq 2, F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1$

Proof method 1 (for linear recurrences: try $F_{n}=\alpha^{n}$!)

1. $\alpha^{n}=\alpha^{n-1}+\alpha^{n-2}$ implies $\alpha^{n-2}\left(\alpha^{2}-\alpha-1\right)=0$.
2. So if $\alpha^{2}-\alpha-1=0$, the recurrence holds for all n.
3. Solving, $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$
4. Thus, general solution is $F_{n}=a\left(\frac{1+\sqrt{5}}{2}\right)^{n}+b\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
5. Use F_{0} and F_{1} - initial conditions: $a=\frac{\sqrt{5}+1}{2 \sqrt{5}}, b=\frac{\sqrt{5}-1}{2 \sqrt{5}}$

$$
\text { Thus, } F_{n}=\frac{\sqrt{5}+1}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{\sqrt{5}-1}{2 \sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \text {. }
$$

This method fails for repeated roots/non-linear recurrences.
Reading assignment: how to tackle repeated roots case. Read Sections 6.1 and 6.2 from Rosen's book (6th Edition)

Solving recurrence relations

Fibonacci rec $\forall n \geq 2, F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1$

Proof method 1 (for linear recurrences: try $F_{n}=\alpha^{n}$!)

1. $\alpha^{n}=\alpha^{n-1}+\alpha^{n-2}$ implies $\alpha^{n-2}\left(\alpha^{2}-\alpha-1\right)=0$.
2. So if $\alpha^{2}-\alpha-1=0$, the recurrence holds for all n.
3. Solving, $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}$
4. Thus, general solution is $F_{n}=a\left(\frac{1+\sqrt{5}}{2}\right)^{n}+b\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
5. Use F_{0} and F_{1} - initial conditions: $a=\frac{\sqrt{5}+1}{2 \sqrt{5}}, b=\frac{\sqrt{5}-1}{2 \sqrt{5}}$

$$
\text { Thus, } F_{n}=\frac{\sqrt{5}+1}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{\sqrt{5}-1}{2 \sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \text {. }
$$

This method fails for repeated roots/non-linear recurrences.
Reading assignment: how to tackle repeated roots case. Read Sections 6.1 and 6.2 from Rosen's book (6th Edition) We next consider a method of much wider applicability...

Proof Method 2: Using generating functions

Fibonacci recurrence relation
For $n \geq 2, F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1$.
Compute F_{n} in terms of n.

- Consider the power series... $\phi(t)=\sum_{n=0}^{\infty} F(n) t^{n}$.

Proof Method 2: Using generating functions

Fibonacci recurrence relation

For $n \geq 2, F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1$.
Compute F_{n} in terms of n.

- Consider the power series... $\phi(t)=\sum_{n=0}^{\infty} F(n) t^{n}$.

$$
t \phi(t)=\sum_{n=0}^{\infty} F(n) t^{n+1} \quad=\sum_{n=1}^{\infty} F(n-1) t^{n}
$$

Proof Method 2: Using generating functions

Fibonacci recurrence relation

For $n \geq 2, F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1$.
Compute F_{n} in terms of n.

- Consider the power series... $\phi(t)=\sum_{n=0}^{\infty} F(n) t^{n}$.

$$
\begin{array}{rlrl}
t \phi(t) & =\sum_{n=0}^{\infty} F(n) t^{n+1} & =\sum_{n=1}^{\infty} F(n-1) t^{n} \\
t^{2} \phi(t) & =\sum_{n=0}^{\infty} F(n) t^{n+2} & & =\sum_{n=2}^{\infty} F(n-2) t^{n}
\end{array}
$$

Proof Method 2: Using generating functions

Fibonacci recurrence relation

For $n \geq 2, F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1$.
Compute F_{n} in terms of n.

- Consider the power series... $\phi(t)=\sum_{n=0}^{\infty} F(n) t^{n}$.

$$
\begin{aligned}
t \phi(t) & =\sum_{n=0}^{\infty} F(n) t^{n+1} & =\sum_{n=1}^{\infty} F(n-1) t^{n} \\
t^{2} \phi(t) & =\sum_{n=0}^{\infty} F(n) t^{n+2} & =\sum_{n=2}^{\infty} F(n-2) t^{n} \\
\left(t+t^{2}\right) \phi(t) & =\sum_{n=0}^{\infty} F(n) t^{n}-1 & \\
\left(t+t^{2}\right) \phi(t) & =\phi(t)-1 &
\end{aligned}
$$

Proof Method 2: Using generating functions

- $\phi(t)=\frac{1}{1-t-t^{2}}$

Proof Method 2: Using generating functions

- $\phi(t)=\frac{1}{1-t-t^{2}}=\frac{1}{(1-\alpha t)(1-\beta t)}$

Proof Method 2: Using generating functions

- $\phi(t)=\frac{1}{1-t-t^{2}}=\frac{1}{(1-\alpha t)(1-\beta t)}=\frac{a}{1-\alpha t}+\frac{b}{1-\beta t}$
- Solving we get $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}, a=\frac{\sqrt{5}+1}{2 \sqrt{5}}, b=\frac{\sqrt{5}-1}{2 \sqrt{5}}$

Proof Method 2: Using generating functions

- $\phi(t)=\frac{1}{1-t-t^{2}}=\frac{1}{(1-\alpha t)(1-\beta t)}=\frac{a}{1-\alpha t}+\frac{b}{1-\beta t}$
- Solving we get $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}, a=\frac{\sqrt{5}+1}{2 \sqrt{5}}, b=\frac{\sqrt{5}-1}{2 \sqrt{5}}$
- Now $\phi(t)=a\left(1+\alpha t+\alpha^{2} t^{2}+\ldots\right)+b\left(1+\beta t+\beta^{2} t^{2}+\ldots\right)$

Proof Method 2: Using generating functions

- $\phi(t)=\frac{1}{1-t-t^{2}}=\frac{1}{(1-\alpha t)(1-\beta t)}=\frac{a}{1-\alpha t}+\frac{b}{1-\beta t}$
- Solving we get $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}, a=\frac{\sqrt{5}+1}{2 \sqrt{5}}, b=\frac{\sqrt{5}-1}{2 \sqrt{5}}$
- Now $\phi(t)=a\left(1+\alpha t+\alpha^{2} t^{2}+\ldots\right)+b\left(1+\beta t+\beta^{2} t^{2}+\ldots\right)$
- Equating coefficients of t^{n} we get $F_{n}=a \alpha^{n}+b \beta^{n}$.

Proof Method 2: Using generating functions

- $\phi(t)=\frac{1}{1-t-t^{2}}=\frac{1}{(1-\alpha t)(1-\beta t)}=\frac{a}{1-\alpha t}+\frac{b}{1-\beta t}$
- Solving we get $\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}, a=\frac{\sqrt{5}+1}{2 \sqrt{5}}, b=\frac{\sqrt{5}-1}{2 \sqrt{5}}$
- Now $\phi(t)=a\left(1+\alpha t+\alpha^{2} t^{2}+\ldots\right)+b\left(1+\beta t+\beta^{2} t^{2}+\ldots\right)$
- Equating coefficients of t^{n} we get $F_{n}=a \alpha^{n}+b \beta^{n}$.
thus, as before

$$
F(n)=\frac{\sqrt{5}+1}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{\sqrt{5}-1}{2 \sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Properties of generating functions

Definition

The (ordinary) generating function for a sequence $a_{0}, a_{1}, \ldots \in \mathbb{R}$ is the infinite series $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.

- Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$. Then

1. If $f(x)=g(x)$, then $a_{k}=b_{k}$ for all k.
2. $f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}$,
3. $f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k}$,
4. $\frac{d}{d x}\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)=\sum_{k=1}^{\infty}\left(k a_{k}\right) x^{k-1}$

Properties of generating functions

Definition

The (ordinary) generating function for a sequence $a_{0}, a_{1}, \ldots \in \mathbb{R}$ is the infinite series $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.

- Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$. Then

1. If $f(x)=g(x)$, then $a_{k}=b_{k}$ for all k.
2. $f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}$,
3. $f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k}$,
4. $\frac{d}{d x}\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)=\sum_{k=1}^{\infty}\left(k a_{k}\right) x^{k-1}$

- Let $u \in \mathbb{R}, k \in \mathbb{Z}^{\geq 0}$, Then extended binomial coefficient $\binom{u}{k}$ is defined as $\binom{u}{k}=\frac{u(u-1) \ldots(u-k+1)}{k!}$ if $k>0$ and $=1$ if $k=0$.
- What if $u=-n$ for $n \in \mathbb{N}$?

Properties of generating functions

Definition

The (ordinary) generating function for a sequence $a_{0}, a_{1}, \ldots \in \mathbb{R}$ is the infinite series $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.

- Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$. Then

1. If $f(x)=g(x)$, then $a_{k}=b_{k}$ for all k.
2. $f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}$,
3. $f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k}$,
4. $\frac{d}{d x}\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)=\sum_{k=1}^{\infty}\left(k a_{k}\right) x^{k-1}$

- Let $u \in \mathbb{R}, k \in \mathbb{Z}^{\geq 0}$, Then extended binomial coefficient $\binom{u}{k}$ is defined as $\binom{u}{k}=\frac{u(u-1) \ldots(u-k+1)}{k!}$ if $k>0$ and $=1$ if $k=0$.
- What if $u=-n$ for $n \in \mathbb{N}$?

The extended binomial theorem
Let $u \in \mathbb{R},(1+x)^{u}=\sum_{k=0}^{\infty}\binom{u}{k} x^{k}$.

Properties of generating functions

Definition

The (ordinary) generating function for a sequence $a_{0}, a_{1}, \ldots \in \mathbb{R}$ is the infinite series $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.

- Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$. Then

1. If $f(x)=g(x)$, then $a_{k}=b_{k}$ for all k.
2. $f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}$,
3. $f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k}$,
4. $\frac{d}{d x}\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)=\sum_{k=1}^{\infty}\left(k a_{k}\right) x^{k-1}$

- Let $u \in \mathbb{R}, k \in \mathbb{Z}^{\geq 0}$, Then extended binomial coefficient $\binom{u}{k}$ is defined as $\binom{u}{k}=\frac{u(u-1) \ldots(u-k+1)}{k!}$ if $k>0$ and $=1$ if $k=0$.
- What if $u=-n$ for $n \in \mathbb{N}$?

The extended binomial theorem

Let $u \in \mathbb{R},(1+x)^{u}=\sum_{k=0}^{\infty}\binom{u}{k} x^{k}$.
If you don't like this, take $x \in \mathbb{R},|x|<1$.

Simple examples using generating functions

Standard identities:

- $\frac{1}{1-a x}=\sum_{k=0}^{\infty} a^{k} x^{k}$
- $\frac{1}{1-x^{r}}=\sum_{k=0}^{\infty} x^{r k}$
- $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

Simple examples using generating functions

Standard identities:

- $\frac{1}{1-a x}=\sum_{k=0}^{\infty} a^{k} x^{k}$
- $\frac{1}{1-x^{r}}=\sum_{k=0}^{\infty} x^{r k}$
- $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

Class work:

1. Solve the recurrence $a_{k}=4 a_{k-1}$ with $a_{0}=3$.

Simple examples using generating functions

Standard identities:

- $\frac{1}{1-a x}=\sum_{k=0}^{\infty} a^{k} x^{k}$
- $\frac{1}{1-x^{r}}=\sum_{k=0}^{\infty} x^{r k}$
- $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

Class work:

1. Solve the recurrence $a_{k}=4 a_{k-1}$ with $a_{0}=3$.
2. Solve the recurrence $a_{k}=8 a_{k-1}+10^{k-1}$ with $a_{0}=1, a_{1}=9$.

Other applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?

Other applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.

Other applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$

Other applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.

Other applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.

Other applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.
- (H.W) What if there must be ≥ 1 element of each type?

Other applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.
- (H.W) What if there must be ≥ 1 element of each type?
- Proving binomial identities: Show that $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.

Other applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.
- (H.W) What if there must be ≥ 1 element of each type?
- Proving binomial identities: Show that $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.
- Compare coefficients of x^{n} in $(1+x)^{2 n}=\left((1+x)^{n}\right)^{2}$.

Other applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.
- (H.W) What if there must be ≥ 1 element of each type?
- Proving binomial identities: Show that $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.
- Compare coefficients of x^{n} in $(1+x)^{2 n}=\left((1+x)^{n}\right)^{2}$.
- (H.W) Write a recurrence for the number of derrangements. That is, no. of ways to arrange n letters into n addressed envelopes such that no letter goes to the correct envelope.

Other applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.
- (H.W) What if there must be ≥ 1 element of each type?
- Proving binomial identities: Show that $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.
- Compare coefficients of x^{n} in $(1+x)^{2 n}=\left((1+x)^{n}\right)^{2}$.
- (H.W) Write a recurrence for the number of derrangements. That is, no. of ways to arrange n letters into n addressed envelopes such that no letter goes to the correct envelope.
- (H.W) How many ways can a convex n-sided polygon be cut into triangles by adding non-intersecting diagonals (i.e., connecting vertices with non-crossing lines)? Write a recurrence and solve it!

