CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Oct 03, 2023
Lecture 20 - Counting and Combinatorics
Some Applications of Generating functions, Principle of Inclusion-Exclusion

Last few weeks

Basic counting techniques and applications

1. Sum and product, bijection, double counting principles
2. Binomial coefficients and binomial theorem, Pascal's triangle
3. Permutations and combinations with/without repetitions
4. Counting subsets, relations, Handshake lemma
5. Stirling's approximation: Estimating n !
6. Recurrence relations and one method to solve them.
7. Solving recurrence relations via generating functions.

Last few weeks

Basic counting techniques and applications

1. Sum and product, bijection, double counting principles
2. Binomial coefficients and binomial theorem, Pascal's triangle
3. Permutations and combinations with/without repetitions
4. Counting subsets, relations, Handshake lemma
5. Stirling's approximation: Estimating n !
6. Recurrence relations and one method to solve them.
7. Solving recurrence relations via generating functions.

Reading assignment

Read examples/generalizations from Sections 6.1 and 6.2 from Rosen's book (6th Indian Edition). In International 7th version its Sec 8.2 and 8.4?

Properties of generating functions

Definition

The (ordinary) generating function for a sequence $a_{0}, a_{1}, \ldots \in \mathbb{R}$ is the infinite series $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.

- Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$. Then

1. If $f(x)=g(x)$, then $a_{k}=b_{k}$ for all k.
2. $f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}$,
3. $f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k}$,
4. $\frac{d}{d x}\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)=\sum_{k=1}^{\infty}\left(k a_{k}\right) x^{k-1}$

Properties of generating functions

Definition

The (ordinary) generating function for a sequence $a_{0}, a_{1}, \ldots \in \mathbb{R}$ is the infinite series $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.

- Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$. Then

1. If $f(x)=g(x)$, then $a_{k}=b_{k}$ for all k.
2. $f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}$,
3. $f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k}$,
4. $\frac{d}{d x}\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)=\sum_{k=1}^{\infty}\left(k a_{k}\right) x^{k-1}$

- Let $u \in \mathbb{R}, k \in \mathbb{Z}^{\geq 0}$, Then extended binomial coefficient $\binom{u}{k}$ is defined as $\binom{u}{k}=\frac{u(u-1) \ldots(u-k+1)}{k!}$ if $k>0$ and $=1$ if $k=0$.
- What if $u=-n$ for $n \in \mathbb{N}$?

Properties of generating functions

Definition

The (ordinary) generating function for a sequence $a_{0}, a_{1}, \ldots \in \mathbb{R}$ is the infinite series $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.

- Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$. Then

1. If $f(x)=g(x)$, then $a_{k}=b_{k}$ for all k.
2. $f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}$,
3. $f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k}$,
4. $\frac{d}{d x}\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)=\sum_{k=1}^{\infty}\left(k a_{k}\right) x^{k-1}$

- Let $u \in \mathbb{R}, k \in \mathbb{Z}^{\geq 0}$, Then extended binomial coefficient $\binom{u}{k}$ is defined as $\binom{u}{k}=\frac{u(u-1) \ldots(u-k+1)}{k!}$ if $k>0$ and $=1$ if $k=0$.
- What if $u=-n$ for $n \in \mathbb{N}$?

The extended binomial theorem
Let $u \in \mathbb{R},(1+x)^{u}=\sum_{k=0}^{\infty}\binom{u}{k} x^{k}$.

Properties of generating functions

Definition

The (ordinary) generating function for a sequence $a_{0}, a_{1}, \ldots \in \mathbb{R}$ is the infinite series $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.

- Let $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$. Then

1. If $f(x)=g(x)$, then $a_{k}=b_{k}$ for all k.
2. $f(x)+g(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}$,
3. $f(x) g(x)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k}$,
4. $\frac{d}{d x}\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)=\sum_{k=1}^{\infty}\left(k a_{k}\right) x^{k-1}$

- Let $u \in \mathbb{R}, k \in \mathbb{Z}^{\geq 0}$, Then extended binomial coefficient $\binom{u}{k}$ is defined as $\binom{u}{k}=\frac{u(u-1) \ldots(u-k+1)}{k!}$ if $k>0$ and $=1$ if $k=0$.
- What if $u=-n$ for $n \in \mathbb{N}$?

The extended binomial theorem

Let $u \in \mathbb{R},(1+x)^{u}=\sum_{k=0}^{\infty}\binom{u}{k} x^{k}$.
If you don't like this, take $x \in \mathbb{R},|x|<1$.

Simple examples using generating functions

Standard identities:

- $\frac{1}{1-a x}=\sum_{k=0}^{\infty} a^{k} x^{k}$
- $\frac{1}{1-x^{r}}=\sum_{k=0}^{\infty} x^{r k}$
- $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

Some applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?

Some applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.

Some applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$

Some applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.

Some applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.

Some applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.
- (H.W) What if there must be ≥ 1 element of each type?

Some applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.
- (H.W) What if there must be ≥ 1 element of each type?
- Proving binomial identities: Show that $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.

Some applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.
- (H.W) What if there must be ≥ 1 element of each type?
- Proving binomial identities: Show that $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.
- Compare coefficients of x^{n} in $(1+x)^{2 n}=\left((1+x)^{n}\right)^{2}$.

Some applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.
- (H.W) What if there must be ≥ 1 element of each type?
- Proving binomial identities: Show that $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.
- Compare coefficients of x^{n} in $(1+x)^{2 n}=\left((1+x)^{n}\right)^{2}$.
- (H.W) Write a recurrence for the number of derrangements. That is, no. of ways to arrange n letters into n addressed envelopes such that no letter goes to the correct envelope.

Some applications of generating functions

- What is the number of ways a_{k} of selecting k elements from an n element set if repetitions are allowed?
- Let $\phi(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
- Observe that $\phi(x)=\left(1+x+x^{2}+\ldots\right)^{n}=(1-x)^{-n}$
- Expand this by the extended binomial theorem and compare coefficients of x^{k}.
- $a_{k}=\binom{-n}{k}(-1)^{k}=(-1)^{k}\binom{n+k-1}{k}(-1)^{k}=\binom{n+k-1}{k}$.
- (H.W) What if there must be ≥ 1 element of each type?
- Proving binomial identities: Show that $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$. - Compare coefficients of x^{n} in $(1+x)^{2 n}=\left((1+x)^{n}\right)^{2}$.
- (H.W) Write a recurrence for the number of derrangements. That is, no. of ways to arrange n letters into n addressed envelopes such that no letter goes to the correct envelope.
- (H.W) How many ways can a convex n-sided polygon be cut into triangles by adding non-intersecting diagonals (i.e., connecting vertices with non-crossing lines)? Write a recurrence and solve it!

Solving Catalan numbers using generating functions

Catalan Numbers

$$
C(n)=\sum_{i=1}^{n-1} C(i) C(n-i) \text { for } n>1, C(0)=0, C(1)=1
$$

Solving Catalan numbers using generating functions

Catalan Numbers
$C(n)=\sum_{i=1}^{n-1} C(i) C(n-i)$ for $n>1, C(0)=0, C(1)=1$.

- Let $\phi(x)=\sum_{k=1}^{\infty} C(k) x^{k}$.

Solving Catalan numbers using generating functions

Catalan Numbers

$$
C(n)=\sum_{i=1}^{n-1} C(i) C(n-i) \text { for } n>1, C(0)=0, C(1)=1 .
$$

- Let $\phi(x)=\sum_{k=1}^{\infty} C(k) x^{k}$.
- Now consider $\phi(x)^{2}$.
- $\phi(x)^{2}=\left(\sum_{k=1}^{\infty} C(k) x^{k}\right)\left(\sum_{k=1}^{\infty} C(k) x^{k}\right)$

$$
=\left(\sum_{k=2}^{\infty} \sum_{i=1}^{k-1} C(i) C(k-i) x^{k}\right)
$$

$$
=\left(\sum_{k=2}^{\infty} C(k) x^{k}\right)=\phi(x)-x
$$

Solving Catalan numbers using generating functions

Catalan Numbers

$$
C(n)=\sum_{i=1}^{n-1} C(i) C(n-i) \text { for } n>1, C(0)=0, C(1)=1 .
$$

- Let $\phi(x)=\sum_{k=1}^{\infty} C(k) x^{k}$.
- Now consider $\phi(x)^{2}$.
- $\phi(x)^{2}=\left(\sum_{k=1}^{\infty} C(k) x^{k}\right)\left(\sum_{k=1}^{\infty} C(k) x^{k}\right)$

$$
=\left(\sum_{k=2}^{\infty} \sum_{i=1}^{k-1} C(i) C(k-i) x^{k}\right)
$$

$$
=\left(\sum_{k=2}^{\infty} C(k) x^{k}\right)=\phi(x)-x
$$

- Solving for $\phi(x)$ we get, $\phi(x)=\frac{1}{2}\left(1 \pm(1-4 x)^{1 / 2}\right)$
- But since $\phi(0)=0$, we have

$$
\phi(x)=\frac{1}{2}\left(1-(1-4 x)^{1 / 2}\right)=\frac{1}{2}+\left(-\frac{1}{2}(1-4 x)^{1 / 2}\right)
$$

Catalan numbers

Recall: Extended binomial theorem

Let $\alpha \in \mathbb{R},(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}$, where $\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$.

Catalan numbers

Recall: Extended binomial theorem

Let $\alpha \in \mathbb{R},(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}$, where $\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$.

- $\sum_{k=1}^{\infty} C(k) x^{k}=\phi(x)=\frac{1}{2}+\left(-\frac{1}{2}(1-4 x)^{1 / 2}\right)=$ $\frac{1}{2}+\left(-\frac{1}{2} \sum_{k=0}^{\infty}\binom{1 / 2}{k}(-4 x)^{k}\right)$.

Catalan numbers

Recall: Extended binomial theorem

Let $\alpha \in \mathbb{R},(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}$, where $\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$.

- $\sum_{k=1}^{\infty} C(k) x^{k}=\phi(x)=\frac{1}{2}+\left(-\frac{1}{2}(1-4 x)^{1 / 2}\right)=$ $\frac{1}{2}+\left(-\frac{1}{2} \sum_{k=0}^{\infty}\binom{1 / 2}{k}(-4 x)^{k}\right)$.
- The coefficient of x^{k} is $C(k)=-\frac{1}{2}\binom{1 / 2}{k}(-4)^{k}$

$$
\begin{aligned}
& =-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}-k+1\right)\right) \frac{(-4)^{k}}{k!} \\
& \left.=-\frac{1}{2}\left(\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \ldots\left(-\frac{2 k-3}{2}\right)\right) \frac{(-4)^{k}}{k!}
\end{aligned}
$$

Catalan numbers

Recall: Extended binomial theorem

Let $\alpha \in \mathbb{R},(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}$, where $\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$.

- $\sum_{k=1}^{\infty} C(k) x^{k}=\phi(x)=\frac{1}{2}+\left(-\frac{1}{2}(1-4 x)^{1 / 2}\right)=$ $\frac{1}{2}+\left(-\frac{1}{2} \sum_{k=0}^{\infty}\binom{1 / 2}{k}(-4 x)^{k}\right)$.
- The coefficient of x^{k} is $C(k)=-\frac{1}{2}\binom{1 / 2}{k}(-4)^{k}$ $=-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}-k+1\right)\right) \frac{(-4)^{k}}{k!}$ $\left.=-\frac{1}{2}\left(\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \ldots\left(-\frac{2 k-3}{2}\right)\right) \frac{(-4)^{k}}{k!}$
- $C(k)=\frac{(-1)^{k}(-4)^{k}}{2^{k+1} k!} \cdot 1 \cdot 3 \cdots(2 k-3)$

Catalan numbers

Recall: Extended binomial theorem

Let $\alpha \in \mathbb{R},(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}$, where $\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$.

- $\sum_{k=1}^{\infty} C(k) x^{k}=\phi(x)=\frac{1}{2}+\left(-\frac{1}{2}(1-4 x)^{1 / 2}\right)=$ $\frac{1}{2}+\left(-\frac{1}{2} \sum_{k=0}^{\infty}\binom{1 / 2}{k}(-4 x)^{k}\right)$.
- The coefficient of x^{k} is $C(k)=-\frac{1}{2}\binom{1 / 2}{k}(-4)^{k}$

$$
\begin{aligned}
& =-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}-k+1\right)\right) \frac{(-4)^{k}}{k!} \\
& \left.=-\frac{1}{2}\left(\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \ldots\left(-\frac{2 k-3}{2}\right)\right) \frac{(-4)^{k}}{k!}
\end{aligned}
$$

- $C(k)=\frac{(-1)^{k}(-4)^{k}}{2^{k+1} k!} \cdot 1 \cdot 3 \cdots(2 k-3)$
- $C(k)=\frac{1 \cdot 4^{k}}{2^{k+1} \cdot k!} \cdot \frac{1 \cdot 2 \ldots(2 k-3)(2 k-2)}{2^{k-1}(k-1)!}=\frac{(2 k-2)!}{k!(k-1)!}$.

Catalan numbers

Recall: Extended binomial theorem

Let $\alpha \in \mathbb{R},(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}$, where $\binom{\alpha}{n}=\frac{\alpha(\alpha-1) \ldots(\alpha-n+1)}{n!}$.

- $\sum_{k=1}^{\infty} C(k) x^{k}=\phi(x)=\frac{1}{2}+\left(-\frac{1}{2}(1-4 x)^{1 / 2}\right)=$ $\frac{1}{2}+\left(-\frac{1}{2} \sum_{k=0}^{\infty}\binom{1 / 2}{k}(-4 x)^{k}\right)$.
- The coefficient of x^{k} is $C(k)=-\frac{1}{2}\binom{1 / 2}{k}(-4)^{k}$

$$
\begin{aligned}
& =-\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}-k+1\right)\right) \frac{(-4)^{k}}{k!} \\
& \left.=-\frac{1}{2}\left(\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \ldots\left(-\frac{2 k-3}{2}\right)\right) \frac{(-4)^{k}}{k!}
\end{aligned}
$$

- $C(k)=\frac{(-1)^{k}(-4)^{k}}{2^{k+1} k!} \cdot 1 \cdot 3 \cdots(2 k-3)$
$-C(k)=\frac{1 \cdot 4^{k}}{2^{k+1} \cdot k!} \cdot \frac{1 \cdot 2 \ldots \cdot(2 k-3)(2 k-2)}{2^{k-1}(k-1)!}=\frac{(2 k-2)!}{k!(k-1)!}$.
Thus, the $n^{t h}$ Catalan number is given by
$C(n)=\frac{(2 n-2)!}{n!(n-1)!}=\frac{1}{n}\binom{2 n-2}{n-1}$

Principle of Inclusion-Exclusion (PIE)

A simple example:

- If in a class n students like python, m students like C and k students who like both, and ℓ like neither, then how many students are there in the class?

Principle of Inclusion-Exclusion (PIE)

A simple example:

- If in a class n students like python, m students like C and k students who like both, and ℓ like neither, then how many students are there in the class?
- Of course, this also counts the no. who were too lazy to lift their hands!

Principle of Inclusion-Exclusion (PIE)

A simple example:

- If in a class n students like python, m students like C and k students who like both, and ℓ like neither, then how many students are there in the class?
- Of course, this also counts the no. who were too lazy to lift their hands!

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?

Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.

Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.

Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.
- $\left|\cup_{i \in[m]} A_{i}\right|=\sum_{1 \leq i \leq m}\left|A_{i}\right|-\sum_{1 \leq i<j \leq m}\left|A_{i} \cap A_{j}\right|+$
$\sum_{1 \leq i<j<k \leq m}\left|A_{i} \cap \bar{A}_{j} \cap A_{k}\right|-\ldots+(-1)^{m+1}\left|A_{1} \cap \ldots \cap A_{m}\right|$

Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.
- $\left|\cup_{i \in[m]} A_{i}\right|=\sum_{1 \leq i \leq m}\left|A_{i}\right|-\sum_{1 \leq i<j \leq m}\left|A_{i} \cap A_{j}\right|+$
$\sum_{1 \leq i<j<k \leq m}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{m+1}\left|A_{1} \cap \ldots \cap A_{m}\right|$
- But now what is $\left|A_{i}\right|,\left|A_{i} \cap A_{j}\right|,\left|A_{i} \cap A_{j} \cap A_{k}\right|, \ldots$?

Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.
- $\left|\cup_{i \in[m]} A_{i}\right|=\sum_{1 \leq i \leq m}\left|A_{i}\right|-\sum_{1 \leq i<j \leq m}\left|A_{i} \cap A_{j}\right|+$
$\sum_{1 \leq i<j<k \leq m}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{m+1}\left|A_{1} \cap \ldots \cap A_{m}\right|$
- But now what is $\left|A_{i}\right|,\left|A_{i} \cap A_{j}\right|,\left|A_{i} \cap A_{j} \cap A_{k}\right|, \ldots$?
- $\left|A_{i}\right|=(m-1)^{n},\left|A_{i} \cap A_{j}\right|=(m-2)^{n} \ldots$

Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.
- $\left|\cup_{i \in[m]} A_{i}\right|=\sum_{1 \leq i \leq m}\left|A_{i}\right|-\sum_{1 \leq i<j \leq m}\left|A_{i} \cap A_{j}\right|+$ $\sum_{1 \leq i<j<k \leq m}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{m+1}\left|A_{1} \cap \ldots \cap A_{m}\right|$
- But now what is $\left|A_{i}\right|,\left|A_{i} \cap A_{j}\right|,\left|A_{i} \cap A_{j} \cap A_{k}\right|, \ldots$?
- $\left|A_{i}\right|=(m-1)^{n},\left|A_{i} \cap A_{j}\right|=(m-2)^{n} \ldots$
- What about the summation? terms $1 \leq i<j \leq m=$

Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.
- $\left|\cup_{i \in[m]} A_{i}\right|=\sum_{1 \leq i \leq m}\left|A_{i}\right|-\sum_{1 \leq i<j \leq m}\left|A_{i} \cap A_{j}\right|+$
$\sum_{1 \leq i<j<k \leq m}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{m+1}\left|A_{1} \cap \ldots \cap A_{m}\right|$
- But now what is $\left|A_{i}\right|,\left|A_{i} \cap A_{j}\right|,\left|A_{i} \cap A_{j} \cap A_{k}\right|, \ldots$?
- $\left|A_{i}\right|=(m-1)^{n},\left|A_{i} \cap A_{j}\right|=(m-2)^{n} \ldots$
- What about the summation? terms $1 \leq i<j \leq m=\binom{m}{2}$

Thus, we have \# surjections from $[n]$ to $[m]=$

$$
m^{n}-\binom{m}{1}(m-1)^{n}+\binom{m}{2}(m-2)^{n}-\ldots+(-1)^{m-1}\binom{m}{m-1} \cdot 1^{n} .
$$

Proof of PIE

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof: (H.W): Prove PIE by induction.

Proof of PIE

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s

Proof of PIE

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s
- Let a belong to exactly r of the sets A_{1}, \ldots, A_{n}.

Proof of PIE

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s
- Let a belong to exactly r of the sets A_{1}, \ldots, A_{n}.
- Then a is counted $\binom{r}{1}$ times by $\sum\left|A_{i}\right|$, etc.

Proof of PIE

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s
- Let a belong to exactly r of the sets A_{1}, \ldots, A_{n}.
- Then a is counted $\binom{r}{1}$ times by $\sum\left|A_{i}\right|$, etc.
- Thus, overall count $=\binom{r}{1}-\binom{r}{2}+\ldots(-1)^{r+1}\binom{r}{r}$.

Proof of PIE

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s
- Let a belong to exactly r of the sets A_{1}, \ldots, A_{n}.
- Then a is counted $\binom{r}{1}$ times by $\sum\left|A_{i}\right|$, etc.
- Thus, overall count $=\binom{r}{1}-\binom{r}{2}+\ldots(-1)^{r+1}\binom{r}{r}$.
- What is this number?!

Proof of PIE

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s
- Let a belong to exactly r of the sets A_{1}, \ldots, A_{n}.
- Then a is counted $\binom{r}{1}$ times by $\sum\left|A_{i}\right|$, etc.
- Thus, overall count $=\binom{r}{1}-\binom{r}{2}+\ldots(-1)^{r+1}\binom{r}{r}$.
- What is this number?! $=1$!

