CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Oct 05, 2023
Lecture 21 - Counting and Combinatorics Pigeon-Hole Principle (PHP) and its applications

Principle of Inclusion-Exclusion (PIE)

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof: (H.W): Prove PIE by induction.

Principle of Inclusion-Exclusion (PIE)

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s

Principle of Inclusion-Exclusion (PIE)

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s
- Let a belong to exactly r of the sets A_{1}, \ldots, A_{n}.

Principle of Inclusion-Exclusion (PIE)

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s
- Let a belong to exactly r of the sets A_{1}, \ldots, A_{n}.
- Then a is counted $\binom{r}{1}$ times by $\sum\left|A_{i}\right|$, etc.

Principle of Inclusion-Exclusion (PIE)

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s
- Let a belong to exactly r of the sets A_{1}, \ldots, A_{n}.
- Then a is counted $\binom{r}{1}$ times by $\sum\left|A_{i}\right|$, etc.
- Thus, overall count $=\binom{r}{1}-\binom{r}{2}+\ldots(-1)^{r+1}\binom{r}{r}$.

Principle of Inclusion-Exclusion (PIE)

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s
- Let a belong to exactly r of the sets A_{1}, \ldots, A_{n}.
- Then a is counted $\binom{r}{1}$ times by $\sum\left|A_{i}\right|$, etc.
- Thus, overall count $=\binom{r}{1}-\binom{r}{2}+\ldots(-1)^{r+1}\binom{r}{r}$.
- What is this number?!

Principle of Inclusion-Exclusion (PIE)

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Proof:

- We will show that each element in the union is counted exactly once in the r.h.s
- Let a belong to exactly r of the sets A_{1}, \ldots, A_{n}.
- Then a is counted $\binom{r}{1}$ times by $\sum\left|A_{i}\right|$, etc.
- Thus, overall count $=\binom{r}{1}-\binom{r}{2}+\ldots(-1)^{r+1}\binom{r}{r}$.
- What is this number?! $=1$!

Application: Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?

Application: Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.

Application: Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.

Application: Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.

Theorem: Principle of Inclusion-Exclusion (PIE)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be finite sets. Then,

$$
\begin{aligned}
& \left|A_{1} \cup \ldots \cup A_{n}\right|=\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right|
\end{aligned}
$$

Application: Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.
- $\left|\cup_{i \in[m]} A_{i}\right|=\sum_{1 \leq i \leq m}\left|A_{i}\right|-\sum_{1 \leq i<j \leq m}\left|A_{i} \cap A_{j}\right|+$
$\sum_{1 \leq i<j<k \leq m}\left|A_{i} \cap \bar{A}_{j} \cap A_{k}\right|-\ldots+(-1)^{m+1}\left|A_{1} \cap \ldots \cap A_{m}\right|$

Application: Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.
- $\left|\cup_{i \in[m]} A_{i}\right|=\sum_{1 \leq i \leq m}\left|A_{i}\right|-\sum_{1 \leq i<j \leq m}\left|A_{i} \cap A_{j}\right|+$ $\sum_{1 \leq i<j<k \leq m}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{m+1}\left|A_{1} \cap \ldots \cap A_{m}\right|$
- But now what is $\left|A_{i}\right|,\left|A_{i} \cap A_{j}\right|,\left|A_{i} \cap A_{j} \cap A_{k}\right|, \ldots$?

Application: Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.
- $\left|\cup_{i \in[m]} A_{i}\right|=\sum_{1 \leq i \leq m}\left|A_{i}\right|-\sum_{1 \leq i<j \leq m}\left|A_{i} \cap A_{j}\right|+$
$\sum_{1 \leq i<j<k \leq m}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{m+1}\left|A_{1} \cap \ldots \cap A_{m}\right|$
- But now what is $\left|A_{i}\right|,\left|A_{i} \cap A_{j}\right|,\left|A_{i} \cap A_{j} \cap A_{k}\right|, \ldots$?
- $\left|A_{i}\right|=(m-1)^{n},\left|A_{i} \cap A_{j}\right|=(m-2)^{n} \ldots$

Application: Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.
- $\left|\cup_{i \in[m]} A_{i}\right|=\sum_{1 \leq i \leq m}\left|A_{i}\right|-\sum_{1 \leq i<j \leq m}\left|A_{i} \cap A_{j}\right|+$ $\sum_{1 \leq i<j<k \leq m}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{m+1}\left|A_{1} \cap \ldots \cap A_{m}\right|$
- But now what is $\left|A_{i}\right|,\left|A_{i} \cap A_{j}\right|,\left|A_{i} \cap A_{j} \cap A_{k}\right|, \ldots$?
- $\left|A_{i}\right|=(m-1)^{n},\left|A_{i} \cap A_{j}\right|=(m-2)^{n} \ldots$
- What about the summation? terms $1 \leq i<j \leq m=$

Application: Number of surjections

- How many surjections are there from $[n]=\{1, \ldots, n\}$ to $[m]=\{1, \ldots, m\}$?
- \# surjections = total \#functions - those that miss some element in range.
- Let $A_{i}=\{f:[n] \rightarrow[m] \mid i \notin \operatorname{Range}(f)\}$
- Then, \# surjections $=m^{n}-\left|\cup_{i \in[m]} A_{i}\right|$.
$-\left|\cup_{i \in[m]} A_{i}\right|=\sum_{1 \leq i \leq m}\left|A_{i}\right|-\sum_{1 \leq i<j \leq m}\left|A_{i} \cap A_{j}\right|+$
$\sum_{1 \leq i<j<k \leq m}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\ldots+(-1)^{m+1}\left|A_{1} \cap \ldots \cap A_{m}\right|$
- But now what is $\left|A_{i}\right|,\left|A_{i} \cap A_{j}\right|,\left|A_{i} \cap A_{j} \cap A_{k}\right|, \ldots$?
- $\left|A_{i}\right|=(m-1)^{n},\left|A_{i} \cap A_{j}\right|=(m-2)^{n} \ldots$
- What about the summation? terms $1 \leq i<j \leq m=\binom{m}{2}$

Thus, we have \# surjections from $[n]$ to $[m]=$

$$
m^{n}-\binom{m}{1}(m-1)^{n}+\binom{m}{2}(m-2)^{n}-\ldots+(-1)^{m-1}\binom{m}{m-1} \cdot 1^{n} .
$$

Pop Quiz!

1. Does there exist an injective function from a set of $k+1$ elements to a set with k elements? Why or why not?
2. How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?
3. Prove or disprove
3.1 For every $n \in \mathbb{Z}^{+}$, there exists a multiple of n whose decimal expansion only has $0^{\prime} s$ and $1^{\prime} s$.
3.2 Every sequence of $n^{2}+1$ distinct real numbers contains a subsequence of length $n+1$ which is either increasing or decreasing.
3.3 If there are $n \geq 1+r(\ell-1)$ objects which are colored with r different colors, then there exist ℓ objects all with the same color.

This lecture

Pigeon-Hole Principle (PHP) and its applications

This lecture

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let $k \in \mathbb{N}$. If $k+1$ (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

This lecture

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let $k \in \mathbb{N}$. If $k+1$ (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

How do you prove it?

This lecture

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let $k \in \mathbb{N}$. If $k+1$ (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

How do you prove it?
A simple corollary

- Can a function from a set of $k+1$ or more elements to a set with k elements be injective?

Pigeon-Hole Principle (PHP)

Another simple application

For every $n \in \mathbb{Z}^{+}$, there exists a multiple of n whose decimal expansion only has $0^{\prime} s$ and $1^{\prime} s$.

Pigeon-Hole Principle (PHP)

Another simple application

For every $n \in \mathbb{Z}^{+}$, there exists a multiple of n whose decimal expansion only has $0^{\prime} s$ and $1^{\prime} s$.

- Consider $n+1$ integers $k_{1}=1, k_{2}=11, k_{3}=111, \ldots$, $k_{n+1}=1 \ldots 1$ (with $n+11$'s).

Pigeon-Hole Principle (PHP)

Another simple application

For every $n \in \mathbb{Z}^{+}$, there exists a multiple of n whose decimal expansion only has $0^{\prime} s$ and $1^{\prime} s$.

- Consider $n+1$ integers $k_{1}=1, k_{2}=11, k_{3}=111, \ldots$, $k_{n+1}=1 \ldots 1$ (with $n+11$'s).
- When any integer is divided by n, the remainder can be either $0,1, \ldots, n-1$, i.e., n choices.

Pigeon-Hole Principle (PHP)

Another simple application

For every $n \in \mathbb{Z}^{+}$, there exists a multiple of n whose decimal expansion only has $0^{\prime} s$ and $1^{\prime} s$.

- Consider $n+1$ integers $k_{1}=1, k_{2}=11, k_{3}=111, \ldots$, $k_{n+1}=1 \ldots 1$ (with $n+1$'s).
- When any integer is divided by n, the remainder can be either $0,1, \ldots, n-1$, i.e., n choices.
- So among the $n+1$ integers, by PHP, at least 2 must have the same remainder.

Pigeon-Hole Principle (PHP)

Another simple application

For every $n \in \mathbb{Z}^{+}$, there exists a multiple of n whose decimal expansion only has $0^{\prime} s$ and $1^{\prime} s$.

- Consider $n+1$ integers $k_{1}=1, k_{2}=11, k_{3}=111, \ldots$, $k_{n+1}=1 \ldots 1$ (with $n+1$'s).
- When any integer is divided by n, the remainder can be either $0,1, \ldots, n-1$, i.e., n choices.
- So among the $n+1$ integers, by PHP, at least 2 must have the same remainder.
- That is, $\exists i, j, k_{i}=p n+d, k_{j}=q n+d$.
- But then $\left|k_{i}-k_{j}\right|$ is a multiple of n and its decimal expansion only has $0^{\prime} s$ and $1^{\prime} s$.

A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)
If N objects are placed into k boxes then there is at least one box with at least $\lceil N / k\rceil$ objects.

A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N / k\rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N / k\rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N / k\rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N / k\rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N / k\rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N / k\rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.

A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N / k\rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N / k\rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.
- If N cards are selected then at least 1 box has $\lceil N / 4\rceil$ cards.

A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N / k\rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N / k\rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.
- If N cards are selected then at least 1 box has $\lceil N / 4\rceil$ cards.
- To have ≥ 3 cards from same suit, suffices $\lceil N / 4\rceil \geq 3$.

A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N / k\rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N / k\rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.
- If N cards are selected then at least 1 box has $\lceil N / 4\rceil$ cards.
- To have ≥ 3 cards from same suit, suffices $\lceil N / 4\rceil \geq 3$.
- Thus, $N=9$.

A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N / k\rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N / k\rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.
- If N cards are selected then at least 1 box has $\lceil N / 4\rceil$ cards.
- To have ≥ 3 cards from same suit, suffices $\lceil N / 4\rceil \geq 3$.
- Thus, $N=9$. But can we do better?

A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N / k\rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N / k\rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.
- If N cards are selected then at least 1 box has $\lceil N / 4\rceil$ cards.
- To have ≥ 3 cards from same suit, suffices $\lceil N / 4\rceil \geq 3$.
- Thus, $N=9$. But can we do better? No.

Another application of PHP

Question: Give a sequence of 10 real numbers with no subsequence of length 4 which is increasing or decreasing.

Another application of PHP

Question: Give a sequence of 10 real numbers with no subsequence of length 4 which is increasing or decreasing.

Theorem

Every sequence of $n^{2}+1$ distinct real numbers contains a subsequence of length $n+1$ which is either increasing or decreasing.

Another application of PHP

Theorem

Every sequence of $n^{2}+1$ distinct real numbers contains a subsequence of length $n+1$ which is either increasing or decreasing.

1. Let $a_{1}, \ldots, a_{n^{2}+1}$ be a sequence of distinct real numbers.

Another application of PHP

Theorem

Every sequence of $n^{2}+1$ distinct real numbers contains a subsequence of length $n+1$ which is either increasing or decreasing.

1. Let $a_{1}, \ldots, a_{n^{2}+1}$ be a sequence of distinct real numbers.
2. For each $k \in\left\{1 \ldots n^{2}+1\right\}$, let $\left(i_{k}, d_{k}\right)$ denote a pair: $i_{k}=$ length of longest increasing subsequence starting from a_{k} $d_{k}=$ length of longest decreasing subsequence starting from a_{k}

Another application of PHP

Theorem

Every sequence of $n^{2}+1$ distinct real numbers contains a subsequence of length $n+1$ which is either increasing or decreasing.

1. Let $a_{1}, \ldots, a_{n^{2}+1}$ be a sequence of distinct real numbers.
2. For each $k \in\left\{1 \ldots n^{2}+1\right\}$, let $\left(i_{k}, d_{k}\right)$ denote a pair: $i_{k}=$ length of longest increasing subsequence starting from a_{k}
$d_{k}=$ length of longest decreasing subsequence starting from a_{k}
3. Suppose, there are no increasing/decreasing subsequences of length $n+1$. Then $\forall k, i_{k} \leq n$ and $d_{k} \leq n$.
4. \therefore by PHP, $\exists \ell, m, 1 \leq \ell<m \leq n^{2}+1$ s.t. $\left(i_{\ell}, d_{\ell}\right)=\left(i_{m}, d_{m}\right)$
5. We will show that this is not possible:

- Case 1: $a_{\ell}<a_{m}$. Then $i_{m} \geq i_{\ell}+1$, a contradiction.
- Case 2: $a_{\ell}>a_{m}$. Then $d_{\ell} \geq d_{m}+1$, a contradiction.

6. All a_{i} 's are distinct so this completes the proof.
