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Lecture 21 — Counting and Combinatorics
Pigeon-Hole Principle (PHP) and its applications
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Proof: (H.W): Prove PIE by induction.
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>

How many surjections are there from [n] = {1,...,n} to
[m] ={1,...,m}?
# surjections = total #functions - those that miss some

element in range.

Let A; ={f:[n| = [m] | i ¢& Range(f)}

» Then, # surjections = m" — | Ujg[p, Ail-

> | Uicpm) Ail = D 1<icm [Ail — Zl§i<j§m |4 N A +
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>
>

Dicicjck<m [AiNA; N A — . + (—D)™H A N, N AL
But now what is |Al‘, |Az N Aj|, |Al N Aj N Ak|, L2
|[A;j| = (m—1)", |[A;NA;| = (m—2)"...

What about the summation? terms 1 <i < j < m = (g‘)

Thus, we have # surjections from [n] to [m| =
m" — (T)(m 1)+ (T;)(m -2 — .4 (_1)m—1( m ) .

m—1



Pop Quiz!

1. Does there exist an injective function from a set of k + 1
elements to a set with k elements? Why or why not?

2. How many cards must be selected from a pack of 52 cards
so that at least three cards of the same suit are chosen?

3. Prove or disprove

3.1 For every n € Z*, there exists a multiple of n whose
decimal expansion only has 0's and 1’s.

3.2 Every sequence of n? + 1 distinct real numbers contains a
subsequence of length n + 1 which is either increasing or
decreasing.

3.3 If there are n > 1 + r(£ — 1) objects which are colored with
r different colors, then there exist £ objects all with the
same color.
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This lecture

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let k € N. If £ + 1 (or more) objects are to be placed in k
boxes, then at least one box will have 2 (or more) objects.

How do you prove it?
A simple corollary

» Can a function from a set of k£ + 1 or more elements to a
set with k elements be injective?
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Another simple application

For every n € Z*, there exists a multiple of n whose decimal
expansion only has 0/s and 1’s.

>

| 4

Consider n + 1 integers k1 = 1, ko = 11, k3 = 111, ...,
kpt1=1...1 (withn+1 1’s).

When any integer is divided by n, the remainder can be
either 0,1,...,n — 1, i.e., n choices.

So among the n + 1 integers, by PHP, at least 2 must have
the same remainder.

That is, 34, j, k; = pn +d, kj = gn + d.

But then |k; — k;| is a multiple of n and its decimal
expansion only has (/s and 1’s. O
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Another application of PHP

Theorem

Every sequence of n? + 1 distinct real numbers contains a
subsequence of length n + 1 which is either increasing or
decreasing.

1. Let a1, ...,a,241 be a sequence of distinct real numbers.

2. For each k € {1...n% + 1}, let (i, ds) denote a pair:

i, = length of longest increasing subsequence starting from ay
dy = length of longest decreasing subsequence starting from ay

3. Suppose, there are no increasing/decreasing subsequences
of length n + 1. Then Vk, i, <n and di < n.

4. - by PHP, 3¢,m,1 < ¢ <m <n®+1s.t. (ig,dp) = (im,dpm)

5. We will show that this is not possible:

» Case 1: ay < a,,. Then i,, > i, + 1, a contradiction.
» Case 2: ay > a,,. Then dy > d,,, + 1, a contradiction.

6. All a;’s are distinct so this completes the proof. Ol



