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Pigeon-Hole Principle (PHP) and its applications
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Principle of Inclusion-Exclusion (PIE)

Theorem: Principle of Inclusion-Exclusion (PIE)

Let A1, A2, . . . , An be finite sets. Then,

|A1 ∪ . . . ∪An| =
∑

1≤i≤n
|Ai| −

∑
1≤i<j≤n

|Ai ∩Aj |

+
∑

1≤i<j<k≤n
|Ai ∩Aj ∩Ak| − . . . + (−1)n+1|A1 ∩ . . . ∩An|

Proof: (H.W): Prove PIE by induction.

I We will show that each element in the union is counted
exactly once in the r.h.s

I Let a belong to exactly r of the sets A1, . . . , An.

I Then a is counted
(
r
1

)
times by

∑
|Ai|, etc.

I Thus, overall count =
(
r
1

)
−
(
r
2

)
+ . . . (−1)r+1

(
r
r

)
.

I What is this number?! =1!
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Application: Number of surjections

I How many surjections are there from [n] = {1, . . . , n} to
[m] = {1, . . . ,m}?
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I |Ai| = (m− 1)n, |Ai ∩Aj | = (m− 2)n...

I What about the summation? terms 1 ≤ i < j ≤ m =
(
m
2

)
Thus, we have # surjections from [n] to [m] =

mn −
(
m
1

)
(m− 1)n +

(
m
2

)
(m− 2)n − . . . + (−1)m−1

(
m

m−1
)
· 1n.
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Pop Quiz!

1. Does there exist an injective function from a set of k + 1
elements to a set with k elements? Why or why not?

2. How many cards must be selected from a pack of 52 cards
so that at least three cards of the same suit are chosen?

3. Prove or disprove

3.1 For every n ∈ Z+, there exists a multiple of n whose
decimal expansion only has 0′s and 1′s.

3.2 Every sequence of n2 + 1 distinct real numbers contains a
subsequence of length n + 1 which is either increasing or
decreasing.

3.3 If there are n ≥ 1 + r(`− 1) objects which are colored with
r different colors, then there exist ` objects all with the
same color.
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This lecture

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let k ∈ N. If k + 1 (or more) objects are to be placed in k
boxes, then at least one box will have 2 (or more) objects.

How do you prove it?
A simple corollary

I Can a function from a set of k + 1 or more elements to a
set with k elements be injective?
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Pigeon-Hole Principle (PHP)

Another simple application

For every n ∈ Z+, there exists a multiple of n whose decimal
expansion only has 0′s and 1′s.

I Consider n + 1 integers k1 = 1, k2 = 11, k3 = 111, . . . ,
kn+1 = 1 . . . 1 (with n + 1 1’s).

I When any integer is divided by n, the remainder can be
either 0, 1, . . . , n− 1, i.e., n choices.

I So among the n + 1 integers, by PHP, at least 2 must have
the same remainder.

I That is, ∃i, j, ki = pn + d, kj = qn + d.

I But then |ki − kj | is a multiple of n and its decimal
expansion only has 0′s and 1′s.
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A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one
box with at least dN/ke objects.

Suppose not. Then each box has strictly less than bN/kc
objects. Therefore, totally there can be strictly less than N
objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so
that at least three cards of the same suit are chosen?

I 4 boxes, one for each suit; each selected card is put in one.

I If N cards are selected then at least 1 box has dN/4e cards.

I To have ≥ 3 cards from same suit, suffices dN/4e ≥ 3.

I Thus, N = 9. But can we do better? No.
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Another application of PHP

Question: Give a sequence of 10 real numbers with no
subsequence of length 4 which is increasing or decreasing.

Theorem

Every sequence of n2 + 1 distinct real numbers contains a
subsequence of length n + 1 which is either increasing or
decreasing.

1. Let a1, . . . , an2+1 be a sequence of distinct real numbers.
2. For each k ∈ {1 . . . n2 + 1}, let (ik, dk) denote a pair:

ik = length of longest increasing subsequence starting from ak
dk = length of longest decreasing subsequence starting from ak

3. Suppose, there are no increasing/decreasing subsequences
of length n + 1. Then ∀k, ik ≤ n and dk ≤ n.

4. ∴ by PHP, ∃`,m, 1 ≤ ` < m ≤ n2 + 1 s.t. (i`, d`) = (im, dm)
5. We will show that this is not possible:

I Case 1: a` < am. Then im ≥ i` + 1, a contradiction.
I Case 2: a` > am. Then d` ≥ dm + 1, a contradiction.

6. All ai’s are distinct so this completes the proof.
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dk = length of longest decreasing subsequence starting from ak

3. Suppose, there are no increasing/decreasing subsequences
of length n + 1. Then ∀k, ik ≤ n and dk ≤ n.

4. ∴ by PHP, ∃`,m, 1 ≤ ` < m ≤ n2 + 1 s.t. (i`, d`) = (im, dm)
5. We will show that this is not possible:

I Case 1: a` < am. Then im ≥ i` + 1, a contradiction.
I Case 2: a` > am. Then d` ≥ dm + 1, a contradiction.

6. All ai’s are distinct so this completes the proof.
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