CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Oct 09, 2023
Lecture 22 - Counting and Combinatorics
Pigeon-Hole Principle (PHP) and its extensions

Recap: Topics in Combinatorics

Counting techniques and applications

1. Basic counting techniques, double counting
2. Binomial theorem, permutations and combinations, Estimating n !
3. Recurrence relations and generating functions
4. Principle of Inclusion-Exclusion (PIE) and its applications.

- Hand-shake Lemma
- Counting the number of surjections on $[n]$.
- Number of derangements $->\frac{1}{e}$ and more (try them!)

Recap: Topics in Combinatorics

Counting techniques and applications

1. Basic counting techniques, double counting
2. Binomial theorem, permutations and combinations, Estimating n !
3. Recurrence relations and generating functions
4. Principle of Inclusion-Exclusion (PIE) and its applications.

- Hand-shake Lemma
- Counting the number of surjections on $[n]$.
- Number of derangements $->\frac{1}{e}$ and more (try them!)

5. Pigeon-Hole Principle (PHP) and its applications.

Different variants of PHP

Simplest formulation (Variant 0)

Let $k \in \mathbb{N}$. If $k+1$ (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

Different variants of PHP

Simplest formulation (Variant 0)

Let $k \in \mathbb{N}$. If $k+1$ (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

PHP (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N / k\rceil$ objects.

Different variants of PHP

Simplest formulation (Variant 0)

Let $k \in \mathbb{N}$. If $k+1$ (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

PHP (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N / k\rceil$ objects.

PHP (Variant 2)

If there are $n \geq 1+r(\ell-1)$ objects colored with r different colors, then there exist ℓ objects all with the same color.

Applications of PHP

1. Does there exist an injective function from a set of $k+1$ elements to a set with k elements? Why or why not?
2. How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?
3. Prove or disprove
3.1 For every $n \in \mathbb{Z}^{+}$, there exists a multiple of n whose decimal expansion only has 0 's and $1^{\prime} s$.
3.2 Every sequence of $n^{2}+1$ distinct real numbers contains a subsequence of length $n+1$ which is either increasing or decreasing.
3.3 (H.W.) If there are $n \geq 1+r(\ell-1)$ objects which are colored with r different colors, then there exist ℓ objects all with the same color.

This lecture

Pigeon-Hole Principle (PHP) and its extensions

Let's play a game

The coloring game

- There are six points on board and two colored chalks.

Let's play a game

The coloring game

- There are six points on board and two colored chalks.
- Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.

Let's play a game

The coloring game

- There are six points on board and two colored chalks.
- Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- You lose if you are first to draw a triangle of your color.

Let's play a game

The coloring game

- There are six points on board and two colored chalks.
- Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- You lose if you are first to draw a triangle of your color.
- Can you ever have a draw?

The coloring game

We will now show that this is impossible. That is,

The coloring game

We will now show that this is impossible. That is,

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

- 2-coloring of edges: coloring all edges of the graph using atmost 2 colors.
- monochromatic (triangle): all edges have the same color.

The coloring game

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

The coloring game

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- Let $1, \ldots, 6$ be the points, and red/blue the colors.

The coloring game

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- Let $1, \ldots, 6$ be the points, and red/blue the colors.
- Consider the edges $16,26,36,46,56$.

The coloring game

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- Let $1, \ldots, 6$ be the points, and red/blue the colors.
- Consider the edges 16, 26, 36, 46, 56 .
- By PHP at least 3 of them must be same color, say $16,26,36$ are red.

The coloring game

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- Let $1, \ldots, 6$ be the points, and red/blue the colors.
- Consider the edges 16, 26, 36, 46, 56 .
- By PHP at least 3 of them must be same color, say $16,26,36$ are red.
- Now there are two possibilities:

The coloring game

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- Let $1, \ldots, 6$ be the points, and red/blue the colors.
- Consider the edges 16, 26, 36, 46, 56 .
- By PHP at least 3 of them must be same color, say $16,26,36$ are red.
- Now there are two possibilities:
- Either one of $12,23,31$ is red (then we have a red triangle).

The coloring game

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- Let $1, \ldots, 6$ be the points, and red/blue the colors.
- Consider the edges 16, 26, 36, 46, 56 .
- By PHP at least 3 of them must be same color, say $16,26,36$ are red.
- Now there are two possibilities:
- Either one of $12,23,31$ is red (then we have a red triangle).
- Else none of them are red, implies 123 is a blue triangle.

The coloring game

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- Let $1, \ldots, 6$ be the points, and red/blue the colors.
- Consider the edges 16, 26, 36, 46, 56 .
- By PHP at least 3 of them must be same color, say $16,26,36$ are red.
- Now there are two possibilities:
- Either one of $12,23,31$ is red (then we have a red triangle).
- Else none of them are red, implies 123 is a blue triangle.
- What if there were 5 or lesser nodes?

The coloring game

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- Let $1, \ldots, 6$ be the points, and red/blue the colors.
- Consider the edges 16, 26, 36, 46, 56 .
- By PHP at least 3 of them must be same color, say $16,26,36$ are red.
- Now there are two possibilities:
- Either one of $12,23,31$ is red (then we have a red triangle).
- Else none of them are red, implies 123 is a blue triangle.
- What if there were 5 or lesser nodes?

Optimality: 6 is the smallest such number

For any graph on 5 or less nodes the above lemma does not hold.

Another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- complete: all pairs of edges are present.
- How do you prove this? Any ideas?
- How is this different from the previous problem?

Another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Consider all edges from some node x.
- Either ≥ 4 edges have red color or ≥ 6 have blue (why?).

Another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Case $1: \geq 4$ red edges
- Either one of edges between a, b, c, d is red or all are blue. So, we are done.

Another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Case 2: ≥ 6 blue edges
- But this means that there are 6 nodes $a, \ldots f$.

Another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Case 2: ≥ 6 blue edges
- But this means that there are 6 nodes $a, \ldots f$.
- Any 2-coloring on 6 vertices has a red or blue triangle.
- Thus we are done again.

Another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Case $2: \geq 6$ blue edges
- But this means that there are 6 nodes $a, \ldots f$.
- Any 2-coloring on 6 vertices has a red or blue triangle.
- Thus we are done again.
- And this completes the proof.

Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- But, is this optimal?

Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- But, is this optimal?
- That is, does this fail for a graph on 9 nodes?
- Can you find 2-coloring on a graph of 9 nodes such that the statement above does NOT hold?

Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- But, is this optimal?
- That is, does this fail for a graph on 9 nodes?
- Can you find 2-coloring on a graph of 9 nodes such that the statement above does NOT hold?

Answer: No! In fact, it does hold on 9 nodes!

Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- But, is this optimal?
- That is, does this fail for a graph on 9 nodes?
- Can you find 2-coloring on a graph of 9 nodes such that the statement above does NOT hold?

Answer: No! In fact, it does hold on 9 nodes!

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Try the same proof as above?

Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Try the same proof as above?
- The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)

Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Try the same proof as above?
- The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)
- But is this case possible?

Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Try the same proof as above?
- The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)
- But is this case possible?
- Recall the Handshake lemma!
- In any graph, the number of nodes having odd degree is even.

Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Try the same proof as above?
- The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)
- But is this case possible?
- Recall the Handshake lemma!
- In any graph, the number of nodes having odd degree is even.
- Thus, this case is impossible and we are done.

