CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Oct 10, 2023
Lecture 23 - Counting and Combinatorics
Searching for order in chaos!

A second coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- complete: all pairs of edges are present.
- How do you prove this? Any ideas?
- How is this different from the previous problem?

A second coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Consider all edges from some node x.
- Either ≥ 4 edges have red color or <4 edges have red color, i.e., ≥ 6 have blue.

A second coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Case $1: \geq 4$ red edges
- Either one of edges between a, b, c, d is red or all are blue. So, we are done.

A second coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Case $2:<4$ red edges $\Longrightarrow \geq 6$ blue edges
- But this means that there are 6 nodes $a, \ldots f$.

A second coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Case $2:<4$ red edges $\Longrightarrow \geq 6$ blue edges
- But this means that there are 6 nodes $a, \ldots f$.
- Any 2-coloring on 6 vertices has a red or blue triangle.
- Thus we are done again.

A second coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Case $2:<4$ red edges $\Longrightarrow \geq 6$ blue edges
- But this means that there are 6 nodes $a, \ldots f$.
- Any 2-coloring on 6 vertices has a red or blue triangle.
- Thus we are done again.
- And this completes the proof.

Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- But, is this optimal?

Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- But, is this optimal?
- That is, does this fail for a graph on 9 nodes?
- Can you find 2-coloring on a graph of 9 nodes such that the statement above does NOT hold?

Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- But, is this optimal?
- That is, does this fail for a graph on 9 nodes?
- Can you find 2-coloring on a graph of 9 nodes such that the statement above does NOT hold?

Answer: No! In fact, it does hold on 9 nodes!

Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- But, is this optimal?
- That is, does this fail for a graph on 9 nodes?
- Can you find 2-coloring on a graph of 9 nodes such that the statement above does NOT hold?

Answer: No! In fact, it does hold on 9 nodes!

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Try the same proof as above?

Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Try the same proof as above?
- The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)

Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Try the same proof as above?
- The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)
- But is this case possible?

Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Try the same proof as above?
- The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)
- But is this case possible?
- Recall the Handshake lemma!
- In any graph, the number of nodes having odd degree is even.

Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- Try the same proof as above?
- The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)
- But is this case possible?
- Recall the Handshake lemma!
- In any graph, the number of nodes having odd degree is even.
- Thus, this case is impossible and we are done.

Edge coloring problems

Summary of results till now

1. Any 2-coloring of a graph on 6 nodes has either a red triangle or a blue triangle.

- 6 is the optimal such number.

Edge coloring problems

Summary of results till now

1. Any 2-coloring of a graph on 6 nodes has either a red triangle or a blue triangle.

- 6 is the optimal such number.

2. Any 2 -coloring of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Edge coloring problems

Summary of results till now

1. Any 2-coloring of a graph on 6 nodes has either a red triangle or a blue triangle.

- 6 is the optimal such number.

2. Any 2-coloring of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.
3. Any 2-coloring of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

- Is 9 the optimal such number?
- (H.W?) Prove that it is!

Edge coloring problems

Summary of results till now

1. Any 2-coloring of a graph on 6 nodes has either a red triangle or a blue triangle.

- 6 is the optimal such number.

2. Any 2 -coloring of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.
3. Any 2-coloring of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

- Is 9 the optimal such number?
- (H.W?) Prove that it is!
- (H.W) Prove that any 2-coloring of a graph on 18 nodes has a monochromatic complete graph on 4 nodes. (hint: you may use any of the above results)

Can we generalize the above?

In general,

How many nodes should a (complete) graph have so that any 2 coloring of its edges has

- either, a k-sized complete graph with all red edges
- or, a ℓ-sized complete graph with all blue edges

Can we generalize the above?

In general,

How many nodes should a (complete) graph have so that any 2 coloring of its edges has

- either, a k-sized complete graph with all red edges
- or, a ℓ-sized complete graph with all blue edges
- The minimal such number is denoted $R(k, \ell)$ and is called Ramsey number.

Can we generalize the above?

In general,

How many nodes should a (complete) graph have so that any 2 coloring of its edges has

- either, a k-sized complete graph with all red edges
- or, a ℓ-sized complete graph with all blue edges
- The minimal such number is denoted $R(k, \ell)$ and is called Ramsey number.
- We have seen that $R(3,3)=6$.
- Also $R(3,4)=9$.

Can we generalize the above?

In general,

How many nodes should a (complete) graph have so that any 2 coloring of its edges has

- either, a k-sized complete graph with all red edges
- or, a ℓ-sized complete graph with all blue edges
- The minimal such number is denoted $R(k, \ell)$ and is called Ramsey number.
- We have seen that $R(3,3)=6$.
- Also $R(3,4)=9$.

What about $R(k, \ell)$ in general?

Ramsey's theorem

Ramsey's theorem

Figure: Frank Plumpton Ramsey (1903-1930)
Ramsey's theorem (simplified version)

Ramsey's theorem

Figure: Frank Plumpton Ramsey (1903-1930)

Ramsey's theorem (simplified version)

For any $k, \ell \in \mathbb{N}$, there exists $R(k, \ell) \in \mathbb{N}$ such that any 2 -coloring of a (complete) graph on $R(k, \ell)$ nodes has

- either, a k-sized complete graph with all red edges
- or, a ℓ-sized complete graph with all blue edges

Ramsey's theorem

Figure: Frank Plumpton Ramsey (1903-1930)

Ramsey's theorem (simplified version)

For any $k, \ell \in \mathbb{N}$, there exists $R(k, \ell) \in \mathbb{N}$ such that any 2 -coloring of a (complete) graph on $R(k, \ell)$ nodes has

- either, a k-sized complete graph with all red edges
- or, a ℓ-sized complete graph with all blue edges

Moreover, we have

$$
R(k, \ell) \leq\binom{ k+\ell-2}{k-1}
$$

Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain some regular sub-part!
E.g., any 2-coloring on a complete graph of 10 nodes contains either a complete graph of 3 nodes of one color or a complete graph of 4 nodes of the other color.

Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain some regular sub-part!
E.g., any 2-coloring on a complete graph of 10 nodes contains either a complete graph of 3 nodes of one color or a complete graph of 4 nodes of the other color.

- Suppose in a group of people any two are friends or enemies.

Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain some regular sub-part!
E.g., any 2-coloring on a complete graph of 10 nodes contains either a complete graph of 3 nodes of one color or a complete graph of 4 nodes of the other color.

- Suppose in a group of people any two are friends or enemies.
- In any set of 10 people there must be either 3 mutual friends or 4 mutual enemies.

Proof of Ramsey's theorem

- What is $R(n, 2)=R(2, n)$?

Proof of Ramsey's theorem

- What is $R(n, 2)=R(2, n)$?
- What is $R(1,1)$? $R(n, 1)=R(1, n)$?

Proof of Ramsey's theorem

- What is $R(n, 2)=R(2, n)$?
- What is $R(1,1)$? $R(n, 1)=R(1, n)$?

For all integers $k, \ell \geq 2, R(k, \ell)$ is finite.

Proof of Ramsey's theorem

- What is $R(n, 2)=R(2, n)$?
- What is $R(1,1)$? $R(n, 1)=R(1, n)$?

For all integers $k, \ell \geq 2, R(k, \ell)$ is finite.
Proof:

- By strong induction on $k+\ell$.

Proof of Ramsey's theorem

- What is $R(n, 2)=R(2, n)$?
- What is $R(1,1)$? $R(n, 1)=R(1, n)$?

For all integers $k, \ell \geq 2, R(k, \ell)$ is finite.
Proof:

- By strong induction on $k+\ell$.
- Base case: $R(2,2)=2$.

Proof of Ramsey's theorem

- What is $R(n, 2)=R(2, n)$?
- What is $R(1,1)$? $R(n, 1)=R(1, n)$?

For all integers $k, \ell \geq 2, R(k, \ell)$ is finite.
Proof:

- By strong induction on $k+\ell$.
- Base case: $R(2,2)=2$.
- Suppose it is true for all k, ℓ such that $k+\ell<N$. We will show that $R(k, \ell)$ is finite by showing

$$
R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

where $R(k-1, \ell)$ and $R(k, \ell-1)$ exist by induction hypothesis since $k+\ell-1<N$.

Proof of Ramsey's theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

$$
\text { Claim: } R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

Proof of Ramsey's theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

$$
\text { Claim: } R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

- i.e., given a 2-colored complete graph with $R(k-1, \ell)+R(k, \ell-1)$ nodes, it has either a complete red graph with k nodes or a complete blue graph with ℓ nodes.

Proof of Ramsey's theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

$$
\text { Claim: } R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

Consider complete graph with $R(k-1, \ell)+R(k, \ell-1)$ nodes.

Proof of Ramsey's theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

$$
\text { Claim: } R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

Consider complete graph with $R(k-1, \ell)+R(k, \ell-1)$ nodes.

Proof of Ramsey's theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

$$
\text { Claim: } R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

Consider complete graph with $R(k-1, \ell)+R(k, \ell-1)$ nodes.

- Clearly $M+N=R(k-1, \ell)+R(k, \ell-1)-1$.

Proof of Ramsey's theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

$$
\text { Claim: } R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

Consider complete graph with $R(k-1, \ell)+R(k, \ell-1)$ nodes.

- Clearly $M+N=R(k-1, \ell)+R(k, \ell-1)-1$.
- By PHP, either $M \geq R(k-1, \ell)$ or $N \geq R(k, \ell-1)$.

Proof of Ramsey's theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

$$
\text { Claim: } R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

Consider complete graph with $R(k-1, \ell)+R(k, \ell-1)$ nodes.

- Case 1: $M \geq R(k-1, \ell)$.

Proof of Ramsey's theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

$$
\text { Claim: } R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

Consider complete graph with $R(k-1, \ell)+R(k, \ell-1)$ nodes.

- Case 1: $M \geq R(k-1, \ell)$. Either complete blue graph on ℓ nodes

Proof of Ramsey's theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

$$
\text { Claim: } R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

Consider complete graph with $R(k-1, \ell)+R(k, \ell-1)$ nodes.

- Case 1: $M \geq R(k-1, \ell)$. Either complete blue graph on ℓ nodes or complete red graph on $k-1$ nodes $+x$

Proof of Ramsey's theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

$$
\text { Claim: } R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

Consider complete graph with $R(k-1, \ell)+R(k, \ell-1)$ nodes.

- Case 1: $M \geq R(k-1, \ell)$.
- Case 2: $N \geq R(k, \ell-1)$ leads to same argument.(Do it!) \checkmark

Proof of Ramsey's theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

$$
\text { Claim: } R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

Consider complete graph with $R(k-1, \ell)+R(k, \ell-1)$ nodes.

Thus in all cases, we have $R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)$.

Proof of Ramsey's theorem

Ramsey's theorem (simplified version)

For all $k, \ell \geq 2, R(k, \ell)$ exists, i.e., it is finite. Further,

$$
R(k, \ell) \leq\binom{ k+\ell-2}{k-1}
$$

Proof:

Proof of Ramsey's theorem

Ramsey's theorem (simplified version)
For all $k, \ell \geq 2, R(k, \ell)$ exists, i.e., it is finite. Further,

$$
R(k, \ell) \leq\binom{ k+\ell-2}{k-1}
$$

Proof: Now, this should be trivial!

Proof of Ramsey's theorem

Ramsey's theorem (simplified version)

For all $k, \ell \geq 2, R(k, \ell)$ exists, i.e., it is finite. Further,

$$
R(k, \ell) \leq\binom{ k+\ell-2}{k-1}
$$

Proof:

- By induction on $k+\ell$ as before.

Proof of Ramsey's theorem

Ramsey's theorem (simplified version)

For all $k, \ell \geq 2, R(k, \ell)$ exists, i.e., it is finite. Further,

$$
R(k, \ell) \leq\binom{ k+\ell-2}{k-1}
$$

Proof:

- By induction on $k+\ell$ as before.
- Base case for $k=\ell=2$ is done.

Proof of Ramsey's theorem

Ramsey's theorem (simplified version)

For all $k, \ell \geq 2, R(k, \ell)$ exists, i.e., it is finite. Further,

$$
R(k, \ell) \leq\binom{ k+\ell-2}{k-1}
$$

Proof:

- By induction on $k+\ell$ as before.
- Base case for $k=\ell=2$ is done.
- By what we just showed and induction hypothesis we have:

$$
\begin{aligned}
R(k, \ell) & \leq R(k-1, \ell)+R(k, \ell-1) \\
& \leq\binom{ k+\ell-3}{k-2}+\binom{k+\ell-3}{k-1}=\binom{k+\ell-2}{k-1}
\end{aligned}
$$

Ramsey theory

Some interesting facts

- The general Ramsey theorem extends this to any finite number of colors (not just 2).
- Several applications, vast research area!
- Exact values are known only for 6 or so entries: $R(3,3)=6$, $R(3,4)=9, R(4,4)=18, \ldots . R(3,8)=28$ or $29 \ldots$
- Only bounds are known for rest. (see wiki on this...)

Ramsey theory

Some interesting facts

- The general Ramsey theorem extends this to any finite number of colors (not just 2).
- Several applications, vast research area!
- Exact values are known only for 6 or so entries: $R(3,3)=6$, $R(3,4)=9, R(4,4)=18, \ldots . R(3,8)=28$ or $29 \ldots$
- Only bounds are known for rest. (see wiki on this...)
- What about lower bounds?

Ramsey theory

Some interesting facts

- The general Ramsey theorem extends this to any finite number of colors (not just 2).
- Several applications, vast research area!
- Exact values are known only for 6 or so entries: $R(3,3)=6$, $R(3,4)=9, R(4,4)=18, \ldots . \quad R(3,8)=28$ or $29 \ldots$
- Only bounds are known for rest. (see wiki on this...)
- What about lower bounds?

So how hard is it? Paul Erdös is supposed to have said:

Ramsey theory

Some interesting facts

- The general Ramsey theorem extends this to any finite number of colors (not just 2).
- Several applications, vast research area!
- Exact values are known only for 6 or so entries: $R(3,3)=6$, $R(3,4)=9, R(4,4)=18, \ldots . . R(3,8)=28$ or $29 \ldots$
- Only bounds are known for rest. (see wiki on this...)
- What about lower bounds?

So how hard is it? Paul Erdös is supposed to have said: Suppose an evil alien would tell mankind "Either you tell me the value of $R(5,5)$ or I will exterminate the human race." ... It would be best to try to compute it, both by mathematics and with a computer. If he would ask for the value of $R(6,6)$, the best thing would be to destroy him before he destroys us, because we couldn't.

