CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Oct 10, 2023 Lecture 23 – Counting and Combinatorics Searching for order in chaos!

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- **complete**: all pairs of edges are present.
- ► How do you prove this? Any ideas?
- ▶ How is this different from the previous problem?

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- \triangleright Consider all edges from some node x.
- ▶ Either ≥ 4 edges have red color or < 4 edges have red color, i.e., ≥ 6 have blue.

).

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- ightharpoonup Case 1: ≥ 4 red edges
 - Either one of edges between a, b, c, d is red or all are blue. So, we are done.

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- ► Case 2: $< 4 \text{ red edges} \implies \ge 6 \text{ blue edges}$
 - \triangleright But this means that there are 6 nodes $a, \ldots f$.

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- ► Case 2: $< 4 \text{ red edges} \implies \ge 6 \text{ blue edges}$
 - ▶ But this means that there are 6 nodes $a, \ldots f$.
 - ▶ Any 2-coloring on 6 vertices has a red or blue triangle.
 - ► Thus we are done again.

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- ightharpoonup Case 2: $< 4 \text{ red edges} \implies \geq 6 \text{ blue edges}$
 - ▶ But this means that there are 6 nodes $a, \ldots f$.
 - ▶ Any 2-coloring on 6 vertices has a red or blue triangle.
 - ► Thus we are done again.
- ▶ And this completes the proof.

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

▶ But, is this optimal?

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- ▶ But, is this optimal?
- ▶ That is, does this fail for a graph on 9 nodes?
- ➤ Can you find 2-coloring on a graph of 9 nodes such that the statement above does NOT hold?

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- ▶ But, is this optimal?
- ▶ That is, does this fail for a graph on 9 nodes?
- ➤ Can you find 2-coloring on a graph of 9 nodes such that the statement above does NOT hold?

Answer: No! In fact, it does hold on 9 nodes!

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- ▶ But, is this optimal?
- ▶ That is, does this fail for a graph on 9 nodes?
- ➤ Can you find 2-coloring on a graph of 9 nodes such that the statement above does NOT hold?

Answer: No! In fact, it does hold on 9 nodes!

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

► Try the same proof as above?

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- ► Try the same proof as above?
- ➤ The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- ► Try the same proof as above?
- ➤ The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)
- ▶ But is this case possible?

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

Proof:

- ► Try the same proof as above?
- ➤ The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)
- ▶ But is this case possible?
- ► Recall the Handshake lemma!
 - ▶ In any graph, the number of nodes having odd degree is even.

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.

- ► Try the same proof as above?
- ► The only new case, where the previous proof does not work, is if all nodes have 3 red edges and 5 blue edges. (Why?)
- ▶ But is this case possible?
- ► Recall the Handshake lemma!
 - ▶ In any graph, the number of nodes having odd degree is even.
- ► Thus, this case is impossible and we are done.

Summary of results till now

- 1. Any 2-coloring of a graph on 6 nodes has either a red triangle or a blue triangle.
 - ▶ 6 is the optimal such number.

Summary of results till now

- 1. Any 2-coloring of a graph on 6 nodes has either a red triangle or a blue triangle.
 - ▶ 6 is the optimal such number.
- 2. Any 2-coloring of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Summary of results till now

- 1. Any 2-coloring of a graph on 6 nodes has either a red triangle or a blue triangle.
 - ▶ 6 is the optimal such number.
- 2. Any 2-coloring of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.
- 3. Any 2-coloring of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.
 - ► Is 9 the optimal such number?
 - ► (H.W?) Prove that it is!

Summary of results till now

- 1. Any 2-coloring of a graph on 6 nodes has either a red triangle or a blue triangle.
 - ▶ 6 is the optimal such number.
- 2. Any 2-coloring of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.
- 3. Any 2-coloring of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.
 - ► Is 9 the optimal such number?
 - ► (H.W?) Prove that it is!
- ► (H.W) Prove that any 2-coloring of a graph on 18 nodes has a monochromatic complete graph on 4 nodes. (hint: you may use any of the above results)

In general,

How many nodes should a (complete) graph have so that any 2 coloring of its edges has

- \triangleright either, a k-sized complete graph with all red edges
- \triangleright or, a ℓ -sized complete graph with all blue edges

In general,

How many nodes should a (complete) graph have so that any 2 coloring of its edges has

- \triangleright either, a k-sized complete graph with all red edges
- \triangleright or, a ℓ -sized complete graph with all blue edges
- The minimal such number is denoted $R(k, \ell)$ and is called Ramsey number.

In general,

How many nodes should a (complete) graph have so that any 2 coloring of its edges has

- \triangleright either, a k-sized complete graph with all red edges
- \triangleright or, a ℓ -sized complete graph with all blue edges
- The minimal such number is denoted $R(k, \ell)$ and is called Ramsey number.
- We have seen that R(3,3) = 6.
- Also R(3,4) = 9.

In general,

How many nodes should a (complete) graph have so that any 2 coloring of its edges has

- \triangleright either, a k-sized complete graph with all red edges
- \triangleright or, a ℓ -sized complete graph with all blue edges
- The minimal such number is denoted $R(k, \ell)$ and is called Ramsey number.
- We have seen that R(3,3) = 6.
- Also R(3,4) = 9.

What about $R(k, \ell)$ in general?

Figure: Frank Plumpton Ramsey (1903-1930)

Figure: Frank Plumpton Ramsey (1903-1930)

Ramsey's theorem (simplified version)

Figure: Frank Plumpton Ramsey (1903-1930)

Ramsey's theorem (simplified version)

For any $k, \ell \in \mathbb{N}$, there exists $R(k, \ell) \in \mathbb{N}$ such that any 2-coloring of a (complete) graph on $R(k, \ell)$ nodes has

- \triangleright either, a k-sized complete graph with all red edges
- \triangleright or, a ℓ -sized complete graph with all blue edges

Figure: Frank Plumpton Ramsey (1903-1930)

Ramsey's theorem (simplified version)

For any $k, \ell \in \mathbb{N}$, there exists $R(k, \ell) \in \mathbb{N}$ such that any 2-coloring of a (complete) graph on $R(k, \ell)$ nodes has

- \triangleright either, a k-sized complete graph with all red edges
- \blacktriangleright or, a $\ell\text{-sized}$ complete graph with all blue edges

Moreover, we have

$$R(k,\ell) \le \binom{k+\ell-2}{k-1}$$

.

Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain some regular sub-part!

E.g., any 2-coloring on a complete graph of 10 nodes contains either a complete graph of 3 nodes of one color or a complete graph of 4 nodes of the other color.

Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain some regular sub-part!

E.g., any 2-coloring on a complete graph of 10 nodes contains either a complete graph of 3 nodes of one color or a complete graph of 4 nodes of the other color.

Suppose in a group of people any two are friends or enemies.

Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain some regular sub-part!

E.g., any 2-coloring on a complete graph of 10 nodes contains either a complete graph of 3 nodes of one color or a complete graph of 4 nodes of the other color.

- Suppose in a group of people any two are friends or enemies.
- ▶ In any set of 10 people there must be either 3 mutual friends or 4 mutual enemies.

▶ What is R(n,2) = R(2,n)?

- ▶ What is R(n,2) = R(2,n)?
- ▶ What is R(1,1)? R(n,1) = R(1,n)?

- ▶ What is R(n,2) = R(2,n)?
- ▶ What is R(1,1)? R(n,1) = R(1,n)?

For all integers $k, \ell \geq 2$, $R(k, \ell)$ is finite.

q

- ▶ What is R(n,2) = R(2,n)?
- ▶ What is R(1,1)? R(n,1) = R(1,n)?

For all integers $k, \ell \geq 2$, $R(k, \ell)$ is finite.

Proof:

▶ By strong induction on $k + \ell$.

- ▶ What is R(n,2) = R(2,n)?
- ▶ What is R(1,1)? R(n,1) = R(1,n)?

For all integers $k, \ell \geq 2$, $R(k, \ell)$ is finite.

Proof:

- ▶ By strong induction on $k + \ell$.
- ▶ Base case: R(2,2) = 2.

- ▶ What is R(n,2) = R(2,n)?
- ▶ What is R(1,1)? R(n,1) = R(1,n)?

For all integers $k, \ell \geq 2$, $R(k, \ell)$ is finite.

Proof:

- ▶ By strong induction on $k + \ell$.
- ▶ Base case: R(2,2) = 2.
- Suppose it is true for all k, ℓ such that $k + \ell < N$. We will show that $R(k, \ell)$ is finite by showing

$$R(k,\ell) \le R(k-1,\ell) + R(k,\ell-1)$$

where $R(k-1,\ell)$ and $R(k,\ell-1)$ exist by induction hypothesis since $k+\ell-1 < N$.

9

By ind hyp assume that $R(k-1,\ell)$ and $R(k,\ell-1)$ exist. Then,

Claim:
$$R(k, \ell) \le R(k - 1, \ell) + R(k, \ell - 1)$$

By ind hyp assume that $R(k-1,\ell)$ and $R(k,\ell-1)$ exist. Then,

Claim:
$$R(k, \ell) \le R(k - 1, \ell) + R(k, \ell - 1)$$

▶ i.e., given a 2-colored complete graph with $R(k-1,\ell) + R(k,\ell-1)$ nodes, it has either a complete red graph with k nodes or a complete blue graph with ℓ nodes.

By ind hyp assume that $R(k-1,\ell)$ and $R(k,\ell-1)$ exist. Then,

Claim:
$$R(k, \ell) \le R(k - 1, \ell) + R(k, \ell - 1)$$

Consider complete graph with $R(k-1,\ell) + R(k,\ell-1)$ nodes.

By ind hyp assume that $R(k-1,\ell)$ and $R(k,\ell-1)$ exist. Then,

Claim:
$$R(k, \ell) \le R(k - 1, \ell) + R(k, \ell - 1)$$

Consider complete graph with $R(k-1,\ell) + R(k,\ell-1)$ nodes.

By ind hyp assume that $R(k-1,\ell)$ and $R(k,\ell-1)$ exist. Then,

Claim:
$$R(k, \ell) \le R(k - 1, \ell) + R(k, \ell - 1)$$

Consider complete graph with $R(k-1,\ell) + R(k,\ell-1)$ nodes.

• Clearly $M + N = R(k - 1, \ell) + R(k, \ell - 1) - 1$.

By ind hyp assume that $R(k-1,\ell)$ and $R(k,\ell-1)$ exist. Then,

Claim:
$$R(k, \ell) \le R(k - 1, \ell) + R(k, \ell - 1)$$

Consider complete graph with $R(k-1,\ell) + R(k,\ell-1)$ nodes.

- ► Clearly $M + N = R(k 1, \ell) + R(k, \ell 1) 1$.
- ▶ By PHP, either $M \ge R(k-1,\ell)$ or $N \ge R(k,\ell-1)$.

By ind hyp assume that $R(k-1,\ell)$ and $R(k,\ell-1)$ exist. Then,

Claim:
$$R(k, \ell) \le R(k - 1, \ell) + R(k, \ell - 1)$$

Consider complete graph with $R(k-1,\ell) + R(k,\ell-1)$ nodes.

▶ Case 1: $M \ge R(k-1, \ell)$.

By ind hyp assume that $R(k-1,\ell)$ and $R(k,\ell-1)$ exist. Then,

Claim:
$$R(k, \ell) \le R(k - 1, \ell) + R(k, \ell - 1)$$

Consider complete graph with $R(k-1,\ell) + R(k,\ell-1)$ nodes.

▶ Case 1: $M \ge R(k-1,\ell)$. Either complete blue graph on ℓ nodes

By ind hyp assume that $R(k-1,\ell)$ and $R(k,\ell-1)$ exist. Then,

Claim:
$$R(k, \ell) \le R(k - 1, \ell) + R(k, \ell - 1)$$

Consider complete graph with $R(k-1,\ell) + R(k,\ell-1)$ nodes.

▶ Case 1: $M \ge R(k-1,\ell)$. Either complete blue graph on ℓ nodes or complete red graph on k-1 nodes + x

By ind hyp assume that $R(k-1,\ell)$ and $R(k,\ell-1)$ exist. Then,

Claim:
$$R(k, \ell) \le R(k - 1, \ell) + R(k, \ell - 1)$$

Consider complete graph with $R(k-1,\ell) + R(k,\ell-1)$ nodes.

- ► Case 1: $M \ge R(k-1, \ell)$. ✓
- ► Case 2: $N \ge R(k, \ell 1)$ leads to same argument.(Do it!) \checkmark

By ind hyp assume that $R(k-1,\ell)$ and $R(k,\ell-1)$ exist. Then,

Claim:
$$R(k, \ell) \le R(k - 1, \ell) + R(k, \ell - 1)$$

Consider complete graph with $R(k-1,\ell) + R(k,\ell-1)$ nodes.

Thus in all cases, we have $R(k, \ell) \leq R(k-1, \ell) + R(k, \ell-1)$.

Ramsey's theorem (simplified version)

For all $k, \ell \geq 2$, $R(k, \ell)$ exists, i.e., it is finite. Further,

$$R(k,\ell) \le \binom{k+\ell-2}{k-1}$$

Proof:

11

Ramsey's theorem (simplified version)

For all $k, \ell \geq 2$, $R(k, \ell)$ exists, i.e., it is finite. Further,

$$R(k,\ell) \le \binom{k+\ell-2}{k-1}$$

Proof: Now, this should be trivial!

11

Ramsey's theorem (simplified version)

For all $k, \ell \geq 2$, $R(k, \ell)$ exists, i.e., it is finite. Further,

$$R(k,\ell) \le \binom{k+\ell-2}{k-1}$$

Proof:

▶ By induction on $k + \ell$ as before.

Ramsey's theorem (simplified version)

For all $k, \ell \geq 2$, $R(k, \ell)$ exists, i.e., it is finite. Further,

$$R(k,\ell) \le \binom{k+\ell-2}{k-1}$$

Proof:

- ▶ By induction on $k + \ell$ as before.
- ▶ Base case for $k = \ell = 2$ is done.

Ramsey's theorem (simplified version)

For all $k, \ell \geq 2$, $R(k, \ell)$ exists, i.e., it is finite. Further,

$$R(k,\ell) \le \binom{k+\ell-2}{k-1}$$

Proof:

- ▶ By induction on $k + \ell$ as before.
- ▶ Base case for $k = \ell = 2$ is done.
- ▶ By what we just showed and induction hypothesis we have:

$$R(k,\ell) \le R(k-1,\ell) + R(k,\ell-1)$$

 $\le {k+\ell-3 \choose k-2} + {k+\ell-3 \choose k-1} = {k+\ell-2 \choose k-1}$

11

Some interesting facts

- ▶ The general Ramsey theorem extends this to any finite number of colors (not just 2).
- Several applications, vast research area!
- Exact values are known only for 6 or so entries: R(3,3) = 6, R(3,4) = 9, R(4,4) = 18,.... R(3,8) = 28 or 29...
- ▶ Only bounds are known for rest. (see wiki on this...)

Some interesting facts

- ▶ The general Ramsey theorem extends this to any finite number of colors (not just 2).
- Several applications, vast research area!
- Exact values are known only for 6 or so entries: R(3,3) = 6, R(3,4) = 9, R(4,4) = 18,.... R(3,8) = 28 or 29...
- ▶ Only bounds are known for rest. (see wiki on this...)
- ▶ What about lower bounds?

Some interesting facts

- ► The general Ramsey theorem extends this to any finite number of colors (not just 2).
- Several applications, vast research area!
- Exact values are known only for 6 or so entries: R(3,3) = 6, R(3,4) = 9, R(4,4) = 18,.... R(3,8) = 28 or 29...
- ▶ Only bounds are known for rest. (see wiki on this...)
- ▶ What about lower bounds?

So how hard is it? Paul Erdös is supposed to have said:

Some interesting facts

- ▶ The general Ramsey theorem extends this to any finite number of colors (not just 2).
- Several applications, vast research area!
- Exact values are known only for 6 or so entries: R(3,3) = 6, R(3,4) = 9, R(4,4) = 18,.... R(3,8) = 28 or 29...
- ▶ Only bounds are known for rest. (see wiki on this...)
- ▶ What about lower bounds?

So how hard is it? Paul Erdös is supposed to have said:

Suppose an evil alien would tell mankind "Either you tell me the value of R(5,5) or I will exterminate the human race." ... It would be best to try to compute it, both by mathematics and with a computer. If he would ask for the value of R(6,6), the best thing would be to destroy him before he destroys us, because we couldn't.