CS 105: DIC on Discrete Structures

Graph theory
Basic terminology, Applications of Eulerian graphs,
Bipartite graphs

Lecture 26
Oct 172023

Principle of extremality

Principle of extremality

- In proving the lemma we used a "new" important proof technique, called extremality.

Principle of extremality

Principle of extremality

- In proving the lemma we used a "new" important proof technique, called extremality.
- By considering some "extreme" structure, we got some additional information which we used in the proof.

Principle of extremality

Principle of extremality

- In proving the lemma we used a "new" important proof technique, called extremality.
- By considering some "extreme" structure, we got some additional information which we used in the proof.
- E.g., In the prev proof, since a maximal path could not be extended, we got that every neighbour of an endpoint of a maximal P is in P.

Principle of extremality

Principle of extremality

- In proving the lemma we used a "new" important proof technique, called extremality.
- By considering some "extreme" structure, we got some additional information which we used in the proof.
- E.g., In the prev proof, since a maximal path could not be extended, we got that every neighbour of an endpoint of a maximal P is in P.
- (H.W) Can you show the theorem directly from extremality without using induction?

A quick quiz

A practical issue

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

Applications of Eulerian graphs

Corollary

Every graph with all vertices having even degree decomposes into cycles

Proof: (H.W) or read from Douglas West's book!

Applications of Eulerian graphs

Corollary

Every graph with all vertices having even degree decomposes into cycles

Proof: (H.W) or read from Douglas West's book!
Another application of Eulerian graphs
If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

Applications of Eulerian graphs

Corollary

Every graph with all vertices having even degree decomposes into cycles

Proof: (H.W) or read from Douglas West's book!
Another application of Eulerian graphs
If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

Application of Eulerian graphs

Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- This is the number of walks with no repeated edges into which it can be decomposed.
- Walks with no repeated edges are called trails.

Application of Eulerian graphs

Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- This is the number of walks with no repeated edges into which it can be decomposed.
- Walks with no repeated edges are called trails.
- So, given a connected graph with $|V|>1$ how many trails can it be decomposed into?

Application of Eulerian graphs

Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- This is the number of walks with no repeated edges into which it can be decomposed.
- Walks with no repeated edges are called trails.
- So, given a connected graph with $|V|>1$ how many trails can it be decomposed into? half of the odd vertices?

Application of Eulerian graphs

Another application of Eulerian graphs
If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- This is the number of walks with no repeated edges into which it can be decomposed.
- Walks with no repeated edges are called trails.
- So, given a connected graph with $|V|>1$ how many trails can it be decomposed into? half of the odd vertices?
- can a graph have $2 k+1$ odd vertices?

Application of Eulerian graphs

Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- This is the number of walks with no repeated edges into which it can be decomposed.
- Walks with no repeated edges are called trails.
- So, given a connected graph with $|V|>1$ how many trails can it be decomposed into? half of the odd vertices?
- can a graph have $2 k+1$ odd vertices?

Theorem

For a connected graph with $|E|>1$ and exactly $2 k$ odd vertices, the minimum number of trails that decompose it is $\max \{k, 1\}$.

Application of Eulerian graphs

Theorem

For a connected graph with $|E|>1$ and exactly $2 k$ odd vertices, the minimum number of trails that decompose it is $\max \{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times

Application of Eulerian graphs

Theorem

For a connected graph with $|E|>1$ and exactly $2 k$ odd vertices, the minimum number of trails that decompose it is $\max \{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.

Application of Eulerian graphs

Theorem

For a connected graph with $|E|>1$ and exactly $2 k$ odd vertices, the minimum number of trails that decompose it is $\max \{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
- Each trail has only 2 ends implies we use at least k trails to satisfy $2 k$ odd vertices.

Application of Eulerian graphs

Theorem

For a connected graph with $|E|>1$ and exactly $2 k$ odd vertices, the minimum number of trails that decompose it is $\max \{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
- Each trail has only 2 ends implies we use at least k trails to satisfy $2 k$ odd vertices.
- We need at least one trail since G has an edge.

Application of Eulerian graphs

Theorem

For a connected graph with $|E|>1$ and exactly $2 k$ odd vertices, the minimum number of trails that decompose it is $\max \{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
- Each trail has only 2 ends implies we use at least k trails to satisfy $2 k$ odd vertices.
- We need at least one trail since G has an edge.
- Thus, we have shown that at least $\max \{k, 1\}$ trails are required.

Application of Eulerian graphs

Theorem

For a connected graph with $|E|>1$ and exactly $2 k$ odd vertices, the minimum number of trails that decompose it is $\max \{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- If $k=0$, one trail suffices (i.e., an Eulerian walk by previous Thm)

Application of Eulerian graphs

Theorem

For a connected graph with $|E|>1$ and exactly $2 k$ odd vertices, the minimum number of trails that decompose it is $\max \{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- If $k=0$, one trail suffices (i.e., an Eulerian walk by previous Thm)
- If $k>0$ we need to prove that k trails suffice.
- Pair up odd vertices in G (in any order) and form G^{\prime} by adding an edge between them.
- G^{\prime} is connected, by previous Thm has an Eulerian walk C.
- Traverse C in G^{\prime} and for each time we cross an edge of G^{\prime} not in G, start a new trail (lift pen!).
- Thus, we get k trails decomposing G.

Some simple types of Graphs

- We have already seen some: connected graphs.

Some simple types of Graphs

- We have already seen some: connected graphs.
- paths, cycles.

Some simple types of Graphs

- We have already seen some: connected graphs.
- paths, cycles.
- Are there other interesting classes of graphs?

Bipartite graphs

Definition

A graph is called bipartite, if the vertices of the graph can be partitioned into $V=X \cup Y, X \cap Y=\emptyset$ s.t., $\forall e=(u, v) \in E$,

- either $u \in X$ and $v \in Y$
- or $v \in X$ and $u \in Y$

Example: m jobs and n people, k courses and ℓ students.

- How can we check if a graph is bipartite?
- Can we characterize bipartite graphs?

Characterizing bipartite graphs using cycles.

- Recall: A path or a cycle has length n if the number of edges in it is n.
- A path (or cycle) is call odd (or even) if its length is odd (or even, respectively).

Lemma

Every closed odd walk contains an odd cycle.
Proof: By induction on the length of the given closed odd walk. Exercise!

Characterizing bipartite graphs using cycles.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

