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Some simple types of Graphs

I We have already seen some: connected graphs.

I paths, cycles.

I Are there other interesting classes of graphs?
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Bipartite graphs

Definition

A graph is called bipartite, if the vertices of the graph can be
partitioned into V = X ∪ Y , X ∩ Y = ∅ s.t., ∀e = (u, v) ∈ E,

I either u ∈ X and v ∈ Y

I or v ∈ X and u ∈ Y

Example: m jobs and n people, k courses and ` students.

I How can we check if a graph is bipartite?

I Can we characterize bipartite graphs?
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Characterizing bipartite graphs using cycles.

I Recall: A path or a cycle has length n if the number of
edges in it is n.

I A path (or cycle) is call odd (or even) if its length is odd
(or even, respectively).

Exercise: Prove or Disprove:

Every closed odd walk contains an odd cycle.
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Characterizing bipartite graphs using cycles.

Exercise: Prove or Disprove:

Every closed odd walk contains an odd cycle.

Proof: By induction on the length of the given closed odd walk.
Exercise!
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Characterizing bipartite graphs using cycles.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

I ( =⇒ ) direction is easy.
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Proof:

I ( =⇒ ) direction is easy.

I Let G be bipartite with (V = X ∪ Y ). Then, every walk in
G alternates between X,Y .
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Characterizing bipartite graphs using cycles.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

I ( =⇒ ) direction is easy.

I Let G be bipartite with (V = X ∪ Y ). Then, every walk in
G alternates between X,Y .

=⇒ if we start from X, each return to X can only happen after
an even number of steps.

=⇒ G has no odd cycles.
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Characterizing bipartite graphs using cycles.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

I (⇐=) Suppose G has no odd cycle, then let us construct
the bipartition. Wlog assume G is connected.
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Characterizing bipartite graphs using cycles.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

I (⇐=) Suppose G has no odd cycle, then let us construct
the bipartition. Wlog assume G is connected.

I Let u ∈ V . Break V into

X = {v ∈ V | length of shortest path Puv from u to v is even},
Y = {v ∈ V | length of shortest path Puv from u to v is odd},
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Characterizing bipartite graphs using cycles.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:
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I Let u ∈ V . Break V into

X = {v ∈ V | length of shortest path Puv from u to v is even},
Y = {v ∈ V | length of shortest path Puv from u to v is odd},

I If there is an edge vv′ between two vertices of X or two
vertices of Y , this creates a closed odd walk: uPuvvv

′Pv′uu.
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Characterizing bipartite graphs using cycles.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

I (⇐=) Suppose G has no odd cycle, then let us construct
the bipartition. Wlog assume G is connected.

I Let u ∈ V . Break V into
X = {v ∈ V | length of shortest path Puv from u to v is even},
Y = {v ∈ V | length of shortest path Puv from u to v is odd},

I If there is an edge vv′ between two vertices of X or two
vertices of Y , this creates a closed odd walk: uPuvvv

′Pv′uu.
I By Lemma, it must contain an odd cycle: contradiction.
I This along with X ∩ Y = ∅ and X ∪ Y = V , implies X,Y is

a bipartition.
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Are these graphs the same?

I To compare graphs, we need to name them!
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Representing and comparing graphs

We start with simple graphs...

To represent it, we need to name the vertices...
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Representing and comparing graphs

We start with simple graphs...

v1

v2 v3

v4

To represent it, we need to name the vertices...

I As an adjacency list:

v1 v2, v4
v2 v1, v3
v3 v2, v4
v4 v1, v3
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Representing and comparing graphs

We start with simple graphs...

v1

v2 v3

v4

To represent it, we need to name the vertices...
I As an adjacency matrix:


v1 v2 v3 v4

v1 0 1 0 1
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v3 0 1 0 1
v4 1 0 1 0


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Representing and comparing graphs

We start with simple graphs...

v1

v2 v3

v4 a

b c

d

To represent it, we need to name the vertices...
I As an adjacency matrix:


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a b c d
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d 1 1 0 0


I Reordering of vertices is same as applying a permutation to

rows and colums of A(G).

I So, it seems two graphs are “same” if by reordering and
renaming the vertices we get the same graph/matrix.
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Representing and comparing graphs

We start with simple graphs...

v1

v2 v3

v4 a

b c

d

To represent it, we need to name the vertices...
I As an adjacency matrix:


v1 v2 v3 v4

v1 0 1 0 1
v2 1 0 1 0
v3 0 1 0 1
v4 1 0 1 0




v1 v3 v2 v4

v1 0 0 1 1
v3 0 0 1 1
v2 1 1 0 0
v4 1 1 0 0




a b c d

a 0 0 1 1
b 0 0 1 1
c 1 1 0 0
d 1 1 0 0


I Reordering of vertices is same as applying a permutation to

rows and colums of A(G).
I So, it seems two graphs are “same” if by reordering and

renaming the vertices we get the same graph/matrix.
I How do we formalize this?
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Isomorphism

Definition

An isomorphism from simple graph G to H is a bijection
f : V (G) → V (H) such that uv ∈ E(G) iff f(u)f(v) ∈ E(H).

I Thus, it is a bijection that “preserves” the edge relation.

I Can be checked using adjacency matrix by
reordering/renaming.

I What are the properties of this function/relation:
R = {(G,H) | ∃ an isomorphism from G to H}.

Proposition

The isomorphism relation is an equivalence relation.

I The equivalence classes are called isomorphism classes.

I When we talked about an “unlabeled” graph till now, we
actually meant the isomorphism class of that graph!
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