CS 105: DIC on Discrete Structures

Graph theory

Basic terminology, Bipartite graphs and a characterization

Lecture 27
Oct 19 2023

Some simple types of Graphs

> We have already seen some: connected graphs.

Some simple types of Graphs

> We have already seen some: connected graphs.

» paths, cycles.

Some simple types of Graphs

> We have already seen some: connected graphs.
» paths, cycles.

» Are there other interesting classes of graphs?

Bipartite graphs

Definition

A graph is called bipartite, if the vertices of the graph can be
partitioned into V=X UY, XNY =0 s.t., Ve = (u,v) € E,

» citherue X andveY
> orveXandueY

Example: m jobs and n people, k courses and ¢ students.
» How can we check if a graph is bipartite?

» Can we characterize bipartite graphs?

Characterizing bipartite graphs using cycles.

> Recall: A path or a cycle has length n if the number of
edges in it is n.

» A path (or cycle) is call odd (or even) if its length is odd
(or even, respectively).

FExercise: Prove or Disprove:

Every closed odd walk contains an odd cycle.

Characterizing bipartite graphs using cycles.

Fxercise: Prove or Disprove:

Every closed odd walk contains an odd cycle.

Proof: By induction on the length of the given closed odd walk.

Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:
» (=) direction is easy.

Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:
» (=) direction is easy.
» Let G be bipartite with (V = X UY’). Then, every walk in
G alternates between X,Y.

Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:
» (=) direction is easy.
» Let G be bipartite with (V = X UY’). Then, every walk in
G alternates between X,Y.

= if we start from X, each return to X can only happen after
an even number of steps.

—> (G has no odd cycles.

Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:

» (<=) Suppose G has no odd cycle, then let us construct
the bipartition. Wlog assume G is connected.

Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:

» (<=) Suppose G has no odd cycle, then let us construct
the bipartition. Wlog assume G is connected.
» Let u € V. Break V into

X = {v € V| length of shortest path P,, from u to v is even},
Y = {v € V| length of shortest path P,, from u to v is odd},

Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:

» (<=) Suppose G has no odd cycle, then let us construct
the bipartition. Wlog assume G is connected.
> Let u € V. Break V into
X = {v € V| length of shortest path P,, from u to v is even},
Y = {v € V| length of shortest path P,, from u to v is odd},
» If there is an edge vv’ between two vertices of X or two
vertices of Y, this creates a closed odd walk: uwP,,vv' Py u.

Characterizing bipartite graphs using cycles.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:

» (<=) Suppose G has no odd cycle, then let us construct
the bipartition. Wlog assume G is connected.
> Let u € V. Break V into
X ={v e V| length of shortest path P,, from u to v is even},
Y = {v € V| length of shortest path P,, from u to v is odd},
» If there is an edge vv’ between two vertices of X or two
vertices of Y, this creates a closed odd walk: uP,,vv' Py u.
» By Lemma, it must contain an odd cycle: contradiction.
» This along with X NY =0 and X UY =V, implies X,Y is
a bipartition. O

Are these graphs the same?

L X

Are these graphs the same?

L X

» To compare graphs, we need to name them!

Are these graphs the same?

L X

» To compare graphs, we need to name them!

g {n a nar

bats i @ name?

h Thot whith W,

call @ vOSE. oo
Iy any ather At

o smell as S0

Representing and comparing graphs

We start with simple graphs...

[]

To represent it, we need to name the vertices...

Representing and comparing graphs

We start with simple graphs...

U2 U3

UlI:IUAL

To represent it, we need to name the vertices...

V1 | U2,U4
. . V2 | V1,73
> As an adjacency list: :
U3 | V2,04
V4 | V1,03

Representing and comparing graphs

We start with simple graphs...

U2 U3

U1Dv4

To represent it, we need to name the vertices...
> As an adjacency matrix:

U1
V2
U3
V4

= O = O
_ o = O

Representing and comparing graphs

We start with simple graphs...

U2 U3

U1Dv4

To represent it, we need to name the vertices...
> As an adjacency matrix:

V1 0 1 0 1
V2 1 0 1 0
U3 0 1 0 1
vy \'1 0 1 0

» But we want to study properties that are independent of
the naming, e.g., connectivity.

> Are two given graphs the “same”, wrt these properties?

Representing and comparing graphs

We start with simple graphs...

V9 V3 b c
U1D’U4 aXd

To represent it, we need to name the vertices...
> As an adjacency matrix:

vy 0 1 0 1
vz | 1 0 1 0
v3z| 0 1 0 1
vy \1 0 1 O

» But we want to study properties that are independent of
the naming, e.g., connectivity.
> Are two given graphs the “same”, wrt these properties?

Representing and comparing graphs

We start with simple graphs...

V9 V3 b c
U1D’U4 aXd

To represent it, we need to name the vertices...
> As an adjacency matrix:

V1 V2 U3 V4 a b ¢ d
vy, {0 1 0 1 a /0 0 1 1
V2 1 0 1 0 b0 0 1 1
v3| 0O 1 0 1 cl1 1 0 0
V4 1 0 1 0 d\1 1 0 0

» But we want to study properties that are independent of
the naming, e.g., connectivity.

> Are two given graphs the “same”, wrt these properties?

Representing and comparing graphs

We start with simple graphs...

V9 V3 b c
U1D’U4 aXd

To represent it, we need to name the vertices...
> As an adjacency matrix:

V1 V2 U3 U4 U1 VU3 V2 U4 a b ¢ d
U1 0 1 0 1 vy /0 O 1 1 a /0 0 1 1
Vg 1 0 1 0 vs | O O 1 1 bl]0 0 1 1
v3 | 0O 1 0 1 i) 1 1 0 0 cl1l1 1 0 O
V4 1 0 1 0 o 1 1 0 O d\1 1 0 0

» But we want to study properties that are independent of
the naming, e.g., connectivity.
> Are two given graphs the “same”, wrt these properties?

Representing and comparing graphs

We start with simple graphs...

V2 V3 b c
UII:IUZL azd

To represent it, we need to name the vertices...
> As an adjacency matrix:

V1 V2 V3 V4 V1 V3 Uy U4 a b c d
v1 /0 1 0 1 v1 /0 O 1 1 a /0 0 1 1
V2 1 0 1 0 VU3 0 0 1 1 b0 0 1 1
U3 0 1 0 1 V2 1 1 0 0 cl|l1 1 0 O
vy \'1 0 1 O vy \1 1 0 0 d\1 1 0 0

P> Reordering of vertices is same as applying a permutation to
rows and colums of A(G).

> So, it seems two graphs are “same” if by reordering and
renaming the vertices we get the same graph/matrix.

Representing and comparing graphs

We start with simple graphs...

(%) U3 b C
UlI:I'UAL azd

To represent it, we need to name the vertices...
> As an adjacency matrix:

V1 V2 V3 U4 V1 VU3 V2 U4 a b ¢ d

v1 /0 1 0 1 v1 /0 O 1 1 a /0 0 1 1

V2 1 0 1 0 U3 0 0 1 1 b0 0 1 1

vy 0O 1 0 1 vu | 1 1 0 O c|l1 1 0 0

vy \1 0 1 O vy \1 1 0 O d\1 1 0 0
to

> Reordering of vertices is same as applying a permutation
rows and colums of A(G).

» So, it seems two graphs are “same” if by reordering and
renaming the vertices we get the same graph/matrix.

» How do we formalize this?

[somorphism

Definition

An isomorphism from simple graph GG to H is a bijection
f:V(G) = V(H) such that uwv € E(G) iff f(u)f(v) € E(H).

[somorphism

Definition

An isomorphism from simple graph G to H is a bijection
f:V(G) = V(H) such that wv € E(G) iff f(u)f(v) € E(H).

» Thus, it is a bijection that “preserves” the edge relation.

» Can be checked using adjacency matrix by
reordering/renaming.

» What are the properties of this function/relation:
R ={(G,H) | 3 an isomorphism from G to H}.

[somorphism

Definition

An isomorphism from simple graph G to H is a bijection
f:V(G) = V(H) such that wv € E(G) iff f(u)f(v) € E(H).

» Thus, it is a bijection that “preserves” the edge relation.

» Can be checked using adjacency matrix by
reordering/renaming.

» What are the properties of this function/relation:
R ={(G,H) | 3 an isomorphism from G to H}.

Proposition

The isomorphism relation is an equivalence relation.

[somorphism

Definition

An isomorphism from simple graph G to H is a bijection
f:V(G) = V(H) such that wv € E(G) iff f(u)f(v) € E(H).

» Thus, it is a bijection that “preserves” the edge relation.

» Can be checked using adjacency matrix by
reordering/renaming.

» What are the properties of this function/relation:
R ={(G,H) | 3 an isomorphism from G to H}.

Proposition

The isomorphism relation is an equivalence relation.

P> The equivalence classes are called isomorphism classes.

[somorphism

Definition

An isomorphism from simple graph G to H is a bijection
f:V(G) = V(H) such that wv € E(G) iff f(u)f(v) € E(H).

» Thus, it is a bijection that “preserves” the edge relation.

» Can be checked using adjacency matrix by
reordering/renaming.

» What are the properties of this function/relation:
R ={(G,H) | 3 an isomorphism from G to H}.

Proposition

The isomorphism relation is an equivalence relation.

P> The equivalence classes are called isomorphism classes.

» When we talked about an “unlabeled” graph till now, we
actually meant the isomorphism class of that graph!

