CS 105: DIC on Discrete Structures

Graph theory
Graph Isomorphism

Lecture 28
Oct 232023

Topic 3: Graph theory

Recap of last four lectures:

1. Basics: graphs, paths, cycles, walks, trails; connected graphs.
2. Eulerian graphs and a characterization in terms of degrees of vertices.
3. Bipartite graphs and a characterization in terms of odd length cycles.

Topic 3: Graph theory

Recap of last four lectures:

1. Basics: graphs, paths, cycles, walks, trails; connected graphs.
2. Eulerian graphs and a characterization in terms of degrees of vertices.
3. Bipartite graphs and a characterization in terms of odd length cycles.
4. Graph representation and isomorphism

Reference: Sections 1.1-1.3 of Chapter 1 from Douglas West.

Recall: Representing and comparing graphs

We start with simple graphs...

To represent it, we need to name the vertices...

Recall: Representing and comparing graphs

We start with simple graphs...

To represent it, we need to name the vertices...

- As an adjacency list: | v_{1} | v_{2}, v_{4} |
| :---: | :---: |
| v_{2} | v_{1}, v_{3} |
| v_{3} | v_{2}, v_{4} |
| v_{4} | v_{1}, v_{3} |

Recall: Representing and comparing graphs

We start with simple graphs...

To represent it, we need to name the vertices...

- As an adjacency matrix:

$$
\left.\begin{array}{l}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array} \begin{array}{cccc}
v_{1} & v_{2} & v_{3} & v_{4} \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Recall: Representing and comparing graphs

We start with simple graphs...

To represent it, we need to name the vertices...

- As an adjacency matrix:

$$
\left.\begin{array}{l}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array} \begin{array}{cccc}
v_{1} & v_{2} & v_{3} & v_{4} \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

- But we want to study properties that are independent of the naming, e.g., connectivity.
- Are two given graphs the "same", wrt these properties?

Recall: Representing and comparing graphs

We start with simple graphs...

To represent it, we need to name the vertices...

- As an adjacency matrix:

$$
\left.\begin{array}{l}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array} \begin{array}{cccc}
v_{1} & v_{2} & v_{3} & v_{4} \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

- But we want to study properties that are independent of the naming, e.g., connectivity.
- Are two given graphs the "same", wrt these properties?

Recall: Representing and comparing graphs

We start with simple graphs...

To represent it, we need to name the vertices...

- As an adjacency matrix:

	v_{1}	v_{2}	v_{3}	v_{4}	$\begin{array}{ccccc}a & b & c & d\end{array}$					
v_{1}	(0		0	1				0	1	
	1	0	1	0				0	1	
	0	1	0	1			1	1	0	
	(1	0	1	0				1	0	

- But we want to study properties that are independent of the naming, e.g., connectivity.
- Are two given graphs the "same", wrt these properties?

Recall: Representing and comparing graphs

We start with simple graphs...

To represent it, we need to name the vertices...

- As an adjacency matrix:
v_{1}
v_{2}
v_{3}
$v_{4}$$\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$
v_{1}
v_{3}
v_{2}
$v_{4}$$\left(\begin{array}{cccc}v_{1} & v_{3} & v_{2} & v_{4} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right)$

\quad| a | b | c | d |
| :--- | :--- | :--- | :--- |
| a | | | |
| b | | | |
| c | | | |
| d | | | |\(\left(\begin{array}{llll}0 \& 0 \& 1 \& 1

0 \& 0 \& 1 \& 1

1 \& 1 \& 0 \& 0

1 \& 1 \& 0 \& 0\end{array}\right)\)

- But we want to study properties that are independent of the naming, e.g., connectivity.
- Are two given graphs the "same", wrt these properties?

Recall: Representing and comparing graphs

We start with simple graphs...

To represent it, we need to name the vertices...

- As an adjacency matrix:
$\left.\begin{array}{l} \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4}\end{array} \begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$
$\left.\begin{array}{l} \\ v_{1} \\ v_{3} \\ v_{2} \\ v_{4}\end{array} \begin{array}{cccc}v_{1} & v_{3} & v_{2} & v_{4} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right)$
a
b
c
$d$$\left(\begin{array}{cccl}a & b & c & d \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right)$
- Reordering of vertices is same as applying a permutation to rows and colums of $A(G)$.
- So, it seems two graphs are "same" if by reordering and renaming the vertices we get the same graph/matrix.

Recall: Representing and comparing graphs

We start with simple graphs...

To represent it, we need to name the vertices...

- As an adjacency matrix:
v_{1}
v_{2}
v_{3}
$v_{4}$$\left(\begin{array}{cccc}v_{1} & v_{2} & v_{3} & v_{4} \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$
v_{1}
v_{3}
v_{2}
$v_{4}$$\left(\begin{array}{cccc}v_{1} & v_{3} & v_{2} & v_{4} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right)$
a
b
b
c
$d$$\left(\begin{array}{llll}a & b & c & d \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\right)$
- Reordering of vertices is same as applying a permutation to rows and colums of $A(G)$.
- So, it seems two graphs are "same" if by reordering and renaming the vertices we get the same graph/matrix.
- How do we formalize this?

Isomorphism

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

Isomorphism

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

- Thus, it is a bijection that "preserves" the edge relation.
- Can be checked using adjacency matrix by reordering/renaming.

Isomorphism

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

- Thus, it is a bijection that "preserves" the edge relation.
- Can be checked using adjacency matrix by reordering/renaming.
- What are the properties of this function/relation: $R=\{(G, H) \mid \exists$ an isomorphism from G to $H\}$.

Isomorphism

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

- Thus, it is a bijection that "preserves" the edge relation.
- Can be checked using adjacency matrix by reordering/renaming.
- What are the properties of this function/relation: $R=\{(G, H) \mid \exists$ an isomorphism from G to $H\}$.

Proposition

The isomorphism relation is an equivalence relation.

Isomorphism

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

- Thus, it is a bijection that "preserves" the edge relation.
- Can be checked using adjacency matrix by reordering/renaming.
- What are the properties of this function/relation: $R=\{(G, H) \mid \exists$ an isomorphism from G to $H\}$.

Proposition

The isomorphism relation is an equivalence relation.

- The equivalence classes are called isomorphism classes.

Isomorphism

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

- Thus, it is a bijection that "preserves" the edge relation.
- Can be checked using adjacency matrix by reordering/renaming.
- What are the properties of this function/relation: $R=\{(G, H) \mid \exists$ an isomorphism from G to $H\}$.

Proposition

The isomorphism relation is an equivalence relation.

- The equivalence classes are called isomorphism classes.
- When we talked about an "unlabeled" graph till now, we actually meant the isomorphism class of that graph!

Graph isomorphism

Graph isomorphism

O_{2}

Exercise 1: Which of these graphs are isomorphic? Justify!

Graph isomorphism

Exercise 1: Which of these graphs are isomorphic? Justify!

- To show that two graphs are isomorphic, you have to

1. give names to vertices
2. specify a bijection
3. check that it preserves the adjacency relation

- To show that two graphs are non-isomorphic, find a structural property that is different.

Is checking graph isomorphism easy?

- Exercise 2: Which of these graphs are isomorphic?

Is checking graph isomorphism easy?

- Exercise 2: Which of these graphs are isomorphic?
- A: All of them!

Is checking graph isomorphism easy?

- Exercise 2: Which of these graphs are isomorphic?
- A: All of them!
- This graph is called the Petersen graph and has some very interesting propreties.

Is checking graph isomorphism easy?

- Exercise 2: Which of these graphs are isomorphic?
- A: All of them!
- This graph is called the Petersen graph and has some very interesting propreties.
- vertices are 2-element subsets of 5 -element set and edges are pairs of disjoint 2-element subsets.

Is checking graph isomorphism easy?

- Exercise 2: Which of these graphs are isomorphic?
- A: All of them!
- This graph is called the Petersen graph and has some very interesting propreties.
- vertices are 2 -element subsets of 5 -element set and edges are pairs of disjoint 2 -element subsets.
- 2 vertices that do not share an edge, have exactly 1 common nbr.

Is checking graph isomorphism easy?

- Exercise 2: Which of these graphs are isomorphic?
- A: All of them!
- This graph is called the Petersen graph and has some very interesting propreties.
- vertices are 2 -element subsets of 5 -element set and edges are pairs of disjoint 2 -element subsets.
- 2 vertices that do not share an edge, have exactly 1 common nbr.
Further reading: Graph and sub-graph isomorphism problems.

Some special graphs and notations

k_{5}

$K_{2,3}$

P_{5}

C_{6}

- Complete graphs K_{n}
- Complete bipartite graphs $K_{i, j}$
- Paths P_{n}
- Cycles C_{n}

Some special graphs and notations

K_{5}

triangle

claw

Paw

Kite

Figure: A whole graph zoo!

Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural properties, i.e., properties that do not depend on the naming of vertices are preserved.

Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural properties, i.e., properties that do not depend on the naming of vertices are preserved.

Theorem

If G is isomorphic to H, then the following properties are preserved:

1. G, H have same $\#$ vertices.
2. G, H have same \# edges.

Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural properties, i.e., properties that do not depend on the naming of vertices are preserved.

- Are C_{5} and $P_{5} \cup\{e\}$ isomorphic?

Theorem

If G is isomorphic to H, then the following properties are preserved:

1. G, H have same \# vertices.
2. G, H have same \# edges.

Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural properties, i.e., properties that do not depend on the naming of vertices are preserved.

Theorem

If G is isomorphic to H, then the following properties are preserved:

1. G, H have same \# vertices.
2. G, H have same \# edges.
3. G, H have the same $\#$ vertices of degree $k, \forall k \in \mathbb{N}$.

Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural properties, i.e., properties that do not depend on the naming of vertices are preserved.

G

H

Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural properties, i.e., properties that do not depend on the naming of vertices are preserved.

Theorem

If G is isomorphic to H, then the following properties are preserved:

1. G, H have same \# vertices.
2. G, H have same \# edges.
3. G, H have the same $\#$ vertices of degree $k, \forall k \in \mathbb{N}$.

Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural properties, i.e., properties that do not depend on the naming of vertices are preserved.

Theorem

If G is isomorphic to H, then the following properties are preserved:

1. G, H have same \# vertices.
2. G, H have same \# edges.
3. G, H have the same $\#$ vertices of degree $k, \forall k \in \mathbb{N}$.
4. G has k paths/cycles of length r iff H has k paths/cycles of length r.

Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural properties, i.e., properties that do not depend on the naming of vertices are preserved.

Theorem

If G is isomorphic to H, then the following properties are preserved:

1. G, H have same \# vertices.
2. G, H have same $\#$ edges.
3. G, H have the same $\#$ vertices of degree $k, \forall k \in \mathbb{N}$.
4. G has k paths/cycles of length r iff H has k paths/cycles of length r.
5. G is bipartite iff H is bipartite.
6. ...

Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

What if $G=H$?

Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

What if $G=H$?
An automorphism of G is an isomorphism from G to itself, i.e. a bijection $f: V(G) \rightarrow V(G)$ s.t. $u v \in E(G)$ iff $f(u) f(v) \in E(G)$.

Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

What if $G=H$?
An automorphism of G is an isomorphism from G to itself, i.e. a bijection $f: V(G) \rightarrow V(G)$ s.t. $u v \in E(G)$ iff $f(u) f(v) \in E(G)$.

- What are the automorphisms of P_{4} ?

Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

What if $G=H$?
An automorphism of G is an isomorphism from G to itself, i.e. a bijection $f: V(G) \rightarrow V(G)$ s.t. $u v \in E(G)$ iff $f(u) f(v) \in E(G)$.

- What are the automorphisms of P_{4} ?
- How many automorphisms does K_{n} have?

Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

What if $G=H$?
An automorphism of G is an isomorphism from G to itself, i.e. a bijection $f: V(G) \rightarrow V(G)$ s.t. $u v \in E(G)$ iff $f(u) f(v) \in E(G)$.

- What are the automorphisms of P_{4} ?
- How many automorphisms does K_{n} have?
- How many automorphisms does $K_{r, s}$ have?

Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

An automorphism of G is an isomorphism from G to itself, i.e. a bijection $f: V(G) \rightarrow V(G)$ s.t. $u v \in E(G)$ iff $f(u) f(v) \in E(G)$.

Automorphisms are a measure of symmetry.
Practical applications in graph drawing, visualization, molecular symmetry, structured boolean satisfiability, formal verification

Symmetry Classes
(rule ${ }^{\text {breng }}$

Symmetry Classes $\begin{gathered}\text { Stereogenic Atoms } \\ \text { (rule } \\ 2\end{gathered} \mathrm{~b}^{\prime}$, only ${ }_{1}$ true stereocenter)

Symmetry Classes Stereogenic Atoms
(rule ${ }_{2} \mathrm{a}^{\prime \prime}$)

Symmetry Classes
Stereogenic Atoms (rule ${ }_{3}$)

Some basic stuff that we have already seen

Degree-Sum Formula (also called Handshake Lemma!)
For any graph G with vertex set V and edge set E :

$$
\sum_{v \in V} d(v)=2|E|
$$

Some basic stuff that we have already seen

Subgraphs of a graph G

A subgraph H of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ (and the assignment of endpoints to edges in H is same as in G).

Some basic stuff that we have already seen

Subgraphs of a graph G

A subgraph H of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ (and the assignment of endpoints to edges in H is same as in G).

- E.g., a path in a graph G is a subgraph of G.
- A maximal path H is a subgraph of G s.t. there is no other path H^{\prime} in G such that H is a subgraph of H^{\prime}.

Some basic stuff that we have already seen

Subgraphs of a graph G

A subgraph H of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ (and the assignment of endpoints to edges in H is same as in G).

- E.g., a path in a graph G is a subgraph of G.
- A maximal path H is a subgraph of G s.t. there is no other path H^{\prime} in G such that H is a subgraph of H^{\prime}.
- Let us now consider some special subgraphs...

Cliques and independent sets

- Consider a large social network graph where friends are linked by an edge.
- What is the largest clique of friends?
- If we want to spread a youtube video, how many people should we send it to so that we are guaranteed everyone will see it (assuming friends forward to each other)?

Cliques and independent sets

Cliques and independent sets

- A clique in a graph is a set of pairwise adjacent vertices.
- An independent set in a graph is a set of pairwise non-adjacent vertices.

Cliques and independent sets

Cliques and independent sets

- A clique in a graph is a set of pairwise adjacent vertices.
- An independent set in a graph is a set of pairwise non-adjacent vertices.
Size of a clique/independent set is the number of vertices in it.

Cliques and independent sets

Cliques and independent sets

- A clique in a graph is a set of pairwise adjacent vertices.
- An independent set in a graph is a set of pairwise non-adjacent vertices.
Size of a clique/independent set is the number of vertices in it.

- Thus, a clique in a graph G is a complete subgraph of G.

Cliques and independent sets

Cliques and independent sets

- A clique in a graph is a set of pairwise adjacent vertices.
- An independent set in a graph is a set of pairwise non-adjacent vertices.
Size of a clique/independent set is the number of vertices in it.

- Thus, a clique in a graph G is a complete subgraph of G.
- An independent set in G is a complete subgraph of \bar{G}, where \bar{G} is the complement of G obtained by making all adjacent vertices non-adjacent and vice versa.

Cliques and independent sets

Cliques and independent sets

- A clique in a graph is a set of pairwise adjacent vertices.
- An independent set in a graph is a set of pairwise non-adjacent vertices.
Size of a clique/independent set is the number of vertices in it.

Questions:

- What is the size of the largest clique/independent set in each of the above graphs? In any complete graph?

Cliques and independent sets

Cliques and independent sets

- A clique in a graph is a set of pairwise adjacent vertices.
- An independent set in a graph is a set of pairwise non-adjacent vertices.
Size of a clique/independent set is the number of vertices in it.

Questions:

- What is the size of the largest clique/independent set in each of the above graphs? In any complete graph?
- Given graph G, integer k, does G have a clique of size k ?

Cliques and independent sets

Cliques and independent sets

- A clique in a graph is a set of pairwise adjacent vertices.
- An independent set in a graph is a set of pairwise non-adjacent vertices.
Size of a clique/independent set is the number of vertices in it.

Questions:

- In a graph with 6 vertices, can you always find a clique or an independent set of size 3 ?

Cliques and independent sets

Cliques and independent sets

- A clique in a graph is a set of pairwise adjacent vertices.
- An independent set in a graph is a set of pairwise non-adjacent vertices.
Size of a clique/independent set is the number of vertices in it.

Questions:

- In a graph with 6 vertices, can you always find a clique or an independent set of size 3 ?
- Yes, because $R(3,3)=6$!

Cliques and independent sets

Cliques and independent sets

- A clique in a graph is a set of pairwise adjacent vertices.
- An independent set in a graph is a set of pairwise non-adjacent vertices.
Size of a clique/independent set is the number of vertices in it.

Ramsey's theorem - restated

In any graph with $R(k, \ell)$ vertices, there exists either a clique of size k or an independent set of size ℓ.

