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Topic 3: Graph theory

Recap of last four lectures:

1. Basics: graphs, paths, cycles, walks, trails; connected
graphs.

2. Eulerian graphs and a characterization in terms of degrees
of vertices.

3. Bipartite graphs and a characterization in terms of odd
length cycles.

4. Graph representation and isomorphism

Reference: Sections 1.1-1.3 of Chapter 1 from Douglas West.
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Recall: Representing and comparing graphs

We start with simple graphs...

To represent it, we need to name the vertices...
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Recall: Representing and comparing graphs

We start with simple graphs...

v1

v2 v3

v4

To represent it, we need to name the vertices...

I As an adjacency list:

v1 v2, v4
v2 v1, v3
v3 v2, v4
v4 v1, v3
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I But we want to study properties that are independent of
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I Are two given graphs the “same”, wrt these properties?

3



Recall: Representing and comparing graphs

We start with simple graphs...

v1

v2 v3

v4 a

b c

d

To represent it, we need to name the vertices...
I As an adjacency matrix:


v1 v2 v3 v4

v1 0 1 0 1
v2 1 0 1 0
v3 0 1 0 1
v4 1 0 1 0


I But we want to study properties that are independent of

the naming, e.g., connectivity.

I Are two given graphs the “same”, wrt these properties?

3



Recall: Representing and comparing graphs

We start with simple graphs...

v1

v2 v3

v4 a

b c

d

To represent it, we need to name the vertices...
I As an adjacency matrix:


v1 v2 v3 v4

v1 0 1 0 1
v2 1 0 1 0
v3 0 1 0 1
v4 1 0 1 0




a b c d

a 0 0 1 1
b 0 0 1 1
c 1 1 0 0
d 1 1 0 0


I But we want to study properties that are independent of

the naming, e.g., connectivity.

I Are two given graphs the “same”, wrt these properties?

3



Recall: Representing and comparing graphs

We start with simple graphs...

v1

v2 v3

v4 a

b c

d

To represent it, we need to name the vertices...
I As an adjacency matrix:


v1 v2 v3 v4

v1 0 1 0 1
v2 1 0 1 0
v3 0 1 0 1
v4 1 0 1 0




v1 v3 v2 v4

v1 0 0 1 1
v3 0 0 1 1
v2 1 1 0 0
v4 1 1 0 0




a b c d

a 0 0 1 1
b 0 0 1 1
c 1 1 0 0
d 1 1 0 0


I But we want to study properties that are independent of

the naming, e.g., connectivity.

I Are two given graphs the “same”, wrt these properties?

3



Recall: Representing and comparing graphs

We start with simple graphs...

v1

v2 v3

v4 a

b c

d

To represent it, we need to name the vertices...
I As an adjacency matrix:


v1 v2 v3 v4

v1 0 1 0 1
v2 1 0 1 0
v3 0 1 0 1
v4 1 0 1 0




v1 v3 v2 v4

v1 0 0 1 1
v3 0 0 1 1
v2 1 1 0 0
v4 1 1 0 0




a b c d
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I Reordering of vertices is same as applying a permutation to

rows and colums of A(G).

I So, it seems two graphs are “same” if by reordering and
renaming the vertices we get the same graph/matrix.
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b c

d

To represent it, we need to name the vertices...
I As an adjacency matrix:


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v1 0 1 0 1
v2 1 0 1 0
v3 0 1 0 1
v4 1 0 1 0
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
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v1 0 0 1 1
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

a b c d

a 0 0 1 1
b 0 0 1 1
c 1 1 0 0
d 1 1 0 0


I Reordering of vertices is same as applying a permutation to

rows and colums of A(G).
I So, it seems two graphs are “same” if by reordering and

renaming the vertices we get the same graph/matrix.
I How do we formalize this?
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Isomorphism

Definition

An isomorphism from simple graph G to H is a bijection
f : V (G)→ V (H) such that uv ∈ E(G) iff f(u)f(v) ∈ E(H).

I Thus, it is a bijection that “preserves” the edge relation.

I Can be checked using adjacency matrix by
reordering/renaming.

I What are the properties of this function/relation:
R = {(G,H) | ∃ an isomorphism from G to H}.

Proposition

The isomorphism relation is an equivalence relation.

I The equivalence classes are called isomorphism classes.

I When we talked about an “unlabeled” graph till now, we
actually meant the isomorphism class of that graph!
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Graph isomorphism

Exercise 1: Which of these graphs are isomorphic? Justify!

I To show that two graphs are isomorphic, you have to

1. give names to vertices
2. specify a bijection
3. check that it preserves the adjacency relation

I To show that two graphs are non-isomorphic, find a
structural property that is different.
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Is checking graph isomorphism easy?

I Exercise 2: Which of these graphs are isomorphic?

I A: All of them!
I This graph is called the Petersen graph and has some very

interesting propreties.
I vertices are 2-element subsets of 5-element set and edges are

pairs of disjoint 2-element subsets.
I 2 vertices that do not share an edge, have exactly 1

common nbr.

Further reading: Graph and sub-graph isomorphism problems.
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Some special graphs and notations

I Complete graphs Kn

I Complete bipartite graphs Ki,j

I Paths Pn

I Cycles Cn

Figure: A whole graph zoo!
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Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural
properties, i.e., properties that do not depend on the naming of
vertices are preserved.
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Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural
properties, i.e., properties that do not depend on the naming of
vertices are preserved.

I Are C5 and P5 ∪ {e} isomorphic?

Theorem

If G is isomorphic to H, then the following properties are
preserved:

1. G, H have same # vertices.

2. G, H have same # edges.
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Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural
properties, i.e., properties that do not depend on the naming of
vertices are preserved.

Theorem

If G is isomorphic to H, then the following properties are
preserved:

1. G, H have same # vertices.

2. G, H have same # edges.

3. G, H have the same # vertices of degree k, ∀k ∈ N.

4. G has k paths/cycles of length r iff H has k paths/cycles of
length r.

5. G is bipartite iff H is bipartite.

6. . . .
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Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection
f : V (G)→ V (H) such that uv ∈ E(G) iff f(u)f(v) ∈ E(H).
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Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection
f : V (G)→ V (H) such that uv ∈ E(G) iff f(u)f(v) ∈ E(H).

An automorphism of G is an isomorphism from G to itself, i.e. a
bijection f : V (G)→ V (G) s.t. uv ∈ E(G) iff f(u)f(v) ∈ E(G).

Automorphisms are a measure of symmetry.
Practical applications in graph drawing, visualization, molecular
symmetry, structured boolean satisfiability, formal verification

I What are the automorphisms of P4?
I How many automorphisms does Kn have?
I How many automorphisms does Kr,s have?
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Some basic stuff that we have already seen

Degree-Sum Formula (also called Handshake Lemma!)

For any graph G with vertex set V and edge set E:∑
v∈V

d(v) = 2|E|
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Some basic stuff that we have already seen

Subgraphs of a graph G

A subgraph H of a graph G is a graph H such that
V (H) ⊆ V (G) and E(H) ⊆ E(G) (and the assignment of
endpoints to edges in H is same as in G).
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I E.g., a path in a graph G is a subgraph of G.

I A maximal path H is a subgraph of G s.t. there is no other
path H ′ in G such that H is a subgraph of H ′.
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Some basic stuff that we have already seen

Subgraphs of a graph G

A subgraph H of a graph G is a graph H such that
V (H) ⊆ V (G) and E(H) ⊆ E(G) (and the assignment of
endpoints to edges in H is same as in G).

I E.g., a path in a graph G is a subgraph of G.

I A maximal path H is a subgraph of G s.t. there is no other
path H ′ in G such that H is a subgraph of H ′.

I Let us now consider some special subgraphs...

10



Cliques and independent sets

I Consider a large social network graph where friends are
linked by an edge.

I What is the largest clique of friends?

I If we want to spread a youtube video, how many people
should we send it to so that we are guaranteed everyone
will see it (assuming friends forward to each other)?
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Cliques and independent sets

I A clique in a graph is a set of pairwise adjacent vertices.

I An independent set in a graph is a set of pairwise
non-adjacent vertices.
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I An independent set in a graph is a set of pairwise
non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

I Thus, a clique in a graph G is a complete subgraph of G.

I An independent set in G is a complete subgraph of G,
where G is the complement of G obtained by making all
adjacent vertices non-adjacent and vice versa.
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I What is the size of the largest clique/independent set in
each of the above graphs? In any complete graph?
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I A clique in a graph is a set of pairwise adjacent vertices.

I An independent set in a graph is a set of pairwise
non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

Questions:

I In a graph with 6 vertices, can you always find a clique or
an independent set of size 3?
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Cliques and independent sets

Cliques and independent sets

I A clique in a graph is a set of pairwise adjacent vertices.

I An independent set in a graph is a set of pairwise
non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

Questions:

I In a graph with 6 vertices, can you always find a clique or
an independent set of size 3?

I Yes, because R(3, 3) = 6!
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Cliques and independent sets

Cliques and independent sets

I A clique in a graph is a set of pairwise adjacent vertices.

I An independent set in a graph is a set of pairwise
non-adjacent vertices.

Size of a clique/independent set is the number of vertices in it.

Ramsey’s theorem - restated

In any graph with R(k, `) vertices, there exists either a clique of
size k or an independent set of size `.
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