CS 105: DIC on Discrete Structures

Graph theory

Connectedness in graphs

Lecture 29
Oct 262023

Topic 3: Graph theory

Recap

1. Basic definitions: graphs, paths, cycles, walks, trails; connected graphs.
2. Eulerian graphs and a characterization in terms of degrees of vertices.
3. Bipartite graphs and a characterization in terms of odd length cycles.
4. Graph representation (as matrices, lists, etc.)
5. Graph isomorphisms and automorphisms
6. Subgraphs:

- Cliques and independent sets,
- A zoo of graphs.

Reference: Sections 1.1-1.3 of Chapter 1 from Douglas West.

Recall: Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

Recall: Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

What if $G=H$?

Recall: Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

What if $G=H$?
An automorphism of G is an isomorphism from G to itself, i.e. a bijection $f: V(G) \rightarrow V(G)$ s.t. $u v \in E(G)$ iff $f(u) f(v) \in E(G)$.

Recall: Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

What if $G=H$?
An automorphism of G is an isomorphism from G to itself, i.e. a bijection $f: V(G) \rightarrow V(G)$ s.t. $u v \in E(G)$ iff $f(u) f(v) \in E(G)$.

- What are the automorphisms of P_{4} ?

Recall: Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

What if $G=H$?
An automorphism of G is an isomorphism from G to itself, i.e. a bijection $f: V(G) \rightarrow V(G)$ s.t. $u v \in E(G)$ iff $f(u) f(v) \in E(G)$.

- What are the automorphisms of P_{4} ?
- How many automorphisms does K_{n} have?

Recall: Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

What if $G=H$?
An automorphism of G is an isomorphism from G to itself, i.e. a bijection $f: V(G) \rightarrow V(G)$ s.t. $u v \in E(G)$ iff $f(u) f(v) \in E(G)$.

- What are the automorphisms of P_{4} ?
- How many automorphisms does K_{n} have?
- How many automorphisms does $K_{r, s}$ have?

Recall: Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection $f: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ iff $f(u) f(v) \in E(H)$.

An automorphism of G is an isomorphism from G to itself, i.e. a bijection $f: V(G) \rightarrow V(G)$ s.t. $u v \in E(G)$ iff $f(u) f(v) \in E(G)$.

Automorphisms are a measure of symmetry.
Practical applications in graph drawing, visualization, molecular symmetry, structured boolean satisfiability, formal verification

Symmetry Classes
(rule ${ }_{2} \mathrm{~b}^{\prime}$)

Symmetry Classes $\begin{gathered}\text { Stereogenic Atoms } \\ \text { (rule } \\ 2\end{gathered} \mathrm{~b}^{\prime}$, only ${ }_{1}$ true stereocenter)

Symmetry Classes Stereogenic Atoms
(rule ${ }_{2}$ a")

Symmetry Classes
Stereogenic Atoms (rule ${ }_{3}$)

Cliques and independent sets

- Consider a large social network graph where friends are linked by an edge.
- What is the largest clique of friends?
- If we want to spread a youtube video, how many people should we send it to so that we are guaranteed everyone will see it (assuming friends forward to each other)?

Cliques and independent sets

Cliques and independent sets

- A clique in a graph is a set of pairwise adjacent vertices.
- An independent set in a graph is a set of pairwise non-adjacent vertices.
Size of a clique/independent set is the number of vertices in it.

Cliques and independent sets

Cliques and independent sets

- A clique in a graph is a set of pairwise adjacent vertices.
- An independent set in a graph is a set of pairwise non-adjacent vertices.
Size of a clique/independent set is the number of vertices in it.

Cliques and independent sets

- Thus, a clique in a graph G is a complete subgraph of G.

Subgraphs of a graph G

A subgraph H of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ (and the assignment of endpoints to edges in H is same as in G).

Cliques and independent sets

- Thus, a clique in a graph G is a complete subgraph of G.
- An independent set in G is a complete subgraph of \bar{G}, where \bar{G} is the complement of G obtained by making all adjacent vertices non-adjacent and vice versa.

Subgraphs of a graph G

A subgraph H of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ (and the assignment of endpoints to edges in H is same as in G).

Cliques and independent sets

Questions:

- What is the size of the largest clique/independent set in each of the above graphs? In any complete graph?

Cliques and independent sets

Questions:

- What is the size of the largest clique/independent set in each of the above graphs? In any complete graph?
- Given graph G, integer k, does G have a clique of size k ?

Cliques and independent sets

Questions:

- What is the size of the largest clique/independent set in each of the above graphs? In any complete graph?
- In a graph with 6 vertices, can you always find a clique or an independent set of size 3 ?

Cliques and independent sets

Questions:

- What is the size of the largest clique/independent set in each of the above graphs? In any complete graph?
- In a graph with 6 vertices, can you always find a clique or an independent set of size 3 ?
- Yes, because $R(3,3)=6$!

Cliques and independent sets

Questions:

- What is the size of the largest clique/independent set in each of the above graphs? In any complete graph?
- In a graph with 6 vertices, can you always find a clique or an independent set of size 3 ?
- Yes, because $R(3,3)=6$!

Ramsey's theorem - restated

In any graph with $R(k, \ell)$ vertices, there exists either a clique of size k or an independent set of size ℓ.

Relations between vertices

- We considered a relation between graphs (isomorphism).
- But what about between vertices? Can you think of interesting relations?

Relations between vertices

- We considered a relation between graphs (isomorphism).
- But what about between vertices? Can you think of interesting relations?

1. Adjacency: $u R v$ iff there is an edge between u and v. Any nice properties?

Relations between vertices

- We considered a relation between graphs (isomorphism).
- But what about between vertices? Can you think of interesting relations?

1. Adjacency: $u R v$ iff there is an edge between u and v. Any nice properties?
2. Connectedness: $u P v$ iff there is a path between u and v.

Relations between vertices

- We considered a relation between graphs (isomorphism).
- But what about between vertices? Can you think of interesting relations?

1. Adjacency: $u R v$ iff there is an edge between u and v. Any nice properties?
2. Connectedness: $u P v$ iff there is a path between u and v. P, i.e., connectedness is an equivalence relation.

Relations between vertices

- We considered a relation between graphs (isomorphism).
- But what about between vertices? Can you think of interesting relations?

1. Adjacency: $u R v$ iff there is an edge between u and v. Any nice properties?
2. Connectedness: $u P v$ iff there is a path between u and v. P, i.e., connectedness is an equivalence relation.

Definition

A (connected) component of G is a maximal connected subgraph, i.e., a subgraph that is connected and is not contained in any other connected subgraph of G.

Thus, equivalence classes of P are the vertex sets of the components of G.

Recall: Difference between maximal and maximum

- Is every maximal path maximum, i.e., have maximum length?
- A maximal structure is a structure that is not contained in a larger structure, i.e., increasing the structure will violate some property.
- Maximum just means that size is the greatest among all possible.

Exercises!

1. Give a path which is maximal but not maximum.
2. Give a subgraph of a graph which is maximally connected, but not maximum (i.e., does not have maximum $\#$ edges).
3. How many maximal/maximum independent sets does $K_{r, s}$ have?

Components and cut-edges

Properties of components

- A component with no edges is called trivial. Thus isolated vertices form trivial components.
- Components are pairwise disjoint.

Components and cut-edges

Properties of components

- A component with no edges is called trivial. Thus isolated vertices form trivial components.
- Components are pairwise disjoint.
- What happens to the number of components when you add or delete an edge?

K_{5}

$K_{2,3}$

P_{5}

C_{6}

Components and cut-edges

Properties of components

- A component with no edges is called trivial. Thus isolated vertices form trivial components.
- Components are pairwise disjoint.
- What happens to the number of components when you add or delete an edge?
- Edges whose deletion increases \# components are called cut-edges.

k_{5}

$K_{2,3}$

P_{5}

C_{6}

Components and cut-edges

Properties of components

- A component with no edges is called trivial. Thus isolated vertices form trivial components.
- Components are pairwise disjoint.
- What happens to the number of components when you add or delete an edge?
- Edges whose deletion increases \# components are called cut-edges.

Theorem: Characterize cut-edges using cycles

Components and cut-edges

Properties of components

- A component with no edges is called trivial. Thus isolated vertices form trivial components.
- Components are pairwise disjoint.
- What happens to the number of components when you add or delete an edge?
- Edges whose deletion increases \# components are called cut-edges.

Theorem: Characterize cut-edges using cycles
Exercise!

Components and cut-edges

Properties of components

- A component with no edges is called trivial. Thus isolated vertices form trivial components.
- Components are pairwise disjoint.
- What happens to the number of components when you add or delete an edge?
- Edges whose deletion increases \# components are called cut-edges.

Theorem: Characterize cut-edges using cycles

Exercise! An edge is a cut-edge iff it belongs to no cycle.

