CS 105: DIC on Discrete Structures

Graph theory

Characterizing maximum matchings
via augmenting paths

Lecture 31
Oct 312023

Topic 3: Graph theory

Basic concepts

- Basics: graphs, paths, cycles, walks, trails, ...
- Cliques and independent sets.
- Graph representations, isomorphisms and automorphisms.
- Matchings: perfect, maximal and maximum.

Topic 3: Graph theory

Basic concepts

- Basics: graphs, paths, cycles, walks, trails, ...
- Cliques and independent sets.
- Graph representations, isomorphisms and automorphisms.
- Matchings: perfect, maximal and maximum.

Characterizations

1. Eulerian graphs: Using degrees of vertices.
2. Bipartite graphs: Using odd length cycles.
3. Connected components: Using cycles.

Topic 3: Graph theory

Basic concepts

- Basics: graphs, paths, cycles, walks, trails, ...
- Cliques and independent sets.
- Graph representations, isomorphisms and automorphisms.
- Matchings: perfect, maximal and maximum.

Characterizations

1. Eulerian graphs: Using degrees of vertices.
2. Bipartite graphs: Using odd length cycles.
3. Connected components: Using cycles.
4. Maximum matchings: Using augmenting paths.

Matchings

Definitions

- A matching in a graph G is a set of (non-loop) edges with no shared end-points. The vertices incident to edges in a matching are called matched or saturated. Others are unsaturated.
- A perfect matching in a graph is a matching that saturates every vertex.
- A maximal matching in a graph is a matching that cannot be enlarged by adding an edge.
- A maximum matching is a matching of maximum size (\# edges) among all matchings in a graph.

Matchings: Pop Quiz

Give an example of the following, if possible:

1. A maximal matching in G which is not a maximum matching.
2. A maximum matching in G. How do you know it is maximum?
3. Can there be more than one maximum matching in a graph?
4. A graph which has no perfect matching but has a maximum matching. Is G such a graph?

Matchings: Pop Quiz

- Perfect matching \Longrightarrow maximum matching \Longrightarrow maximal matching
- The reverse directions in the above implications do not hold.

Alternating and Augmenting paths

Definition

- Given a matching M, an M-alternating path is a path that alternates between edges in M and edges not in M.
- An M-alternating path whose endpoints are unmatched by M is an M-augmenting path.

Alternating and Augmenting paths

Definition

- Given a matching M, an M-alternating path is a path that alternates between edges in M and edges not in M.
- An M-alternating path whose endpoints are unmatched by M is an M-augmenting path.

- Ex 1: Give an example of a matching M in G and

1. a M-alternating path which is an M-augmenting path and
2. a M-alternating path which is not an M-augmenting path

Alternating and Augmenting paths

Definition

- Given a matching M, an M-alternating path is a path that alternates between edges in M and edges not in M.
- An M-alternating path whose endpoints are unmatched by M is an M-augmenting path.

Characterization of Maximum matchings

- Clearly, a maximum matching cannot have an M-augmenting path.

Characterization of Maximum matchings

- Clearly, a maximum matching cannot have an M-augmenting path.
- In fact, this is the characterization!

Characterization of Maximum matchings

- Clearly, a maximum matching cannot have an M-augmenting path.
- In fact, this is the characterization!

Theorem

A matching M in G is a maximum matching iff G has no M-augmenting path.

Characterizing maximum matchings

We need a definition and a lemma.

Definition

If M, M^{\prime} are matchings in a graph H, the symmetric difference $M \triangle M^{\prime}$ is the set of edges which are either in M or in M^{\prime} but not both, i.e., $M \triangle M^{\prime}=\left(M \backslash M^{\prime}\right) \cup\left(M^{\prime} \backslash M\right)$.

Characterizing maximum matchings

We need a definition and a lemma.

Definition

If M, M^{\prime} are matchings in a graph H, the symmetric difference $M \triangle M^{\prime}$ is the set of edges which are either in M or in M^{\prime} but not both, i.e., $M \triangle M^{\prime}=\left(M \backslash M^{\prime}\right) \cup\left(M^{\prime} \backslash M\right)$.

Characterizing maximum matchings

We need a definition and a lemma.

Definition

If M, M^{\prime} are matchings in a graph H, the symmetric difference $M \triangle M^{\prime}$ is the set of edges which are either in M or in M^{\prime} but not both, i.e., $M \triangle M^{\prime}=\left(M \backslash M^{\prime}\right) \cup\left(M^{\prime} \backslash M\right)$.

Ex 2: What is the symmetric difference of M (red) and M^{\prime} (green) in the above graph?

Characterizing maximum matchings

We need a definition and a lemma.

Definition

If M, M^{\prime} are matchings in a graph H, the symmetric difference $M \triangle M^{\prime}$ is the set of edges which are either in M or in M^{\prime} but not both, i.e., $M \triangle M^{\prime}=\left(M \backslash M^{\prime}\right) \cup\left(M^{\prime} \backslash M\right)$.

Ex 2: What is the symmetric difference of M (red) and M^{\prime} (green) in the above graph? Can you generalize this?

Characterizing maximum matchings

Lemma

Every component of the symmetric difference of two matchings is either a path or an even cycle.

Characterizing maximum matchings

Lemma

Every component of the symmetric difference of two matchings is either a path or an even cycle.

- Let $F=M \triangle M^{\prime} . F$ has at most 2 edges at each vertex, hence every component is a path or a cycle.

Characterizing maximum matchings

Lemma

Every component of the symmetric difference of two matchings is either a path or an even cycle.

- Let $F=M \triangle M^{\prime} . F$ has at most 2 edges at each vertex, hence every component is a path or a cycle.
- Further every path/cycle alternates between edges of $M \backslash M^{\prime}$ and $M^{\prime} \backslash M$.

Characterizing maximum matchings

Lemma

Every component of the symmetric difference of two matchings is either a path or an even cycle.

- Let $F=M \triangle M^{\prime} . F$ has at most 2 edges at each vertex, hence every component is a path or a cycle.
- Further every path/cycle alternates between edges of $M \backslash M^{\prime}$ and $M^{\prime} \backslash M$.
- Thus, each cycle has even length with equal edges from M and M^{\prime}.

Characterizing maximum matchings

Theorem (Berge'57)

A matching M in G is a maximum matching iff G has no M-augmenting path.

Proof:

Characterizing maximum matchings

Theorem (Berge'57)

A matching M in G is a maximum matching iff G has no M-augmenting path.

Proof:

- One direction is trivial (which one?!).

Characterizing maximum matchings

Theorem (Berge'57)
A matching M in G is a maximum matching iff G has no M-augmenting path.

Proof:

- One direction is trivial (which one?!).
- (\Longleftarrow) For the other, we will show the contrapositive.

Characterizing maximum matchings

Theorem (Berge'57)
A matching M in G is a maximum matching iff G has no M-augmenting path.

Proof:

- One direction is trivial (which one?!).
- (\Longleftarrow) For the other, we will show the contrapositive.
- i.e., if \exists matching M^{\prime} larger than M, we will construct an M-augmenting path.

Characterizing maximum matchings

Theorem (Berge'57)

A matching M in G is a maximum matching iff G has no M-augmenting path.

Proof:

- One direction is trivial (which one?!).
- (\Longleftarrow) For the other, we will show the contrapositive.
- i.e., if \exists matching M^{\prime} larger than M, we will construct an M-augmenting path.
- Let $F=M \triangle M^{\prime}$. By Lemma, F has only paths and even cycles with equal no. of edges from M and M^{\prime}.

Characterizing maximum matchings

Theorem (Berge'57)

A matching M in G is a maximum matching iff G has no M-augmenting path.

Proof:

- One direction is trivial (which one?!).
- (\Longleftarrow) For the other, we will show the contrapositive.
- i.e., if \exists matching M^{\prime} larger than M, we will construct an M-augmenting path.
- Let $F=M \triangle M^{\prime}$. By Lemma, F has only paths and even cycles with equal no. of edges from M and M^{\prime}.
- But then since $\left|M^{\prime}\right|>|M|$ it must have a component with more edges in M^{\prime} than M.

Characterizing maximum matchings

Theorem (Berge'57)

A matching M in G is a maximum matching iff G has no M-augmenting path.

Proof:

- One direction is trivial (which one?!).
- (\Longleftarrow) For the other, we will show the contrapositive.
- i.e., if \exists matching M^{\prime} larger than M, we will construct an M-augmenting path.
- Let $F=M \triangle M^{\prime}$. By Lemma, F has only paths and even cycles with equal no. of edges from M and M^{\prime}.
- But then since $\left|M^{\prime}\right|>|M|$ it must have a component with more edges in M^{\prime} than M.
- This component can only be a path that starts and ends with an edge of M^{\prime}; i.e., it is an M-augmenting path in G.

Perfect matchings in bipartite graphs

- If there are n women and n men, and each woman is compatible with exactly k men and each man compatible with exactly k women, can they be perfectly matched?

Perfect matchings in bipartite graphs

- If there are n women and n men, and each woman is compatible with exactly k men and each man compatible with exactly k women, can they be perfectly matched?
- If there are m jobs and n applicants, when can we find a perfect matching where all m jobs are saturated?

Perfect matchings in bipartite graphs

- Consider a bipartite graph with X, Y as partitions.
- If a matching M saturates X, then for every $S \subseteq X$,

Perfect matchings in bipartite graphs

- Consider a bipartite graph with X, Y as partitions.
- If a matching M saturates X, then for every $S \subseteq X$, what can we say?

Perfect matchings in bipartite graphs

- Consider a bipartite graph with X, Y as partitions.
- If a matching M saturates X, then for every $S \subseteq X$, there must exist at least $|S|$ vertices that have neighbours in S.

Perfect matchings in bipartite graphs

- Consider a bipartite graph with X, Y as partitions.
- If a matching M saturates X, then for every $S \subseteq X$, there must exist at least $|S|$ vertices that have neighbours in S.
- That is, $\forall S \subseteq X,|N(S)| \geq|S|$ (Hall's Condition).

Perfect matchings in bipartite graphs

- Consider a bipartite graph with X, Y as partitions.
- If a matching M saturates X, then for every $S \subseteq X$, there must exist at least $|S|$ vertices that have neighbours in S.
- That is, $\forall S \subseteq X,|N(S)| \geq|S|$ (Hall's Condition). This is a necessary condition, is it sufficient?

Perfect matchings in bipartite graphs

- Consider a bipartite graph with X, Y as partitions.
- If a matching M saturates X, then for every $S \subseteq X$, there must exist at least $|S|$ vertices that have neighbours in S.
- That is, $\forall S \subseteq X,|N(S)| \geq|S|$ (Hall's Condition). This is a necessary condition, is it sufficient?

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X,|N(S)| \geq|S|$.

Characterizing perfect matchings in bipartite graphs

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X,|N(S)| \geq|S|$.

Characterizing perfect matchings in bipartite graphs

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X,|N(S)| \geq|S|$.

Proof: (\Longrightarrow) is straightforward:

- Let M be a matching.
- Then for any $S \subseteq X$, each vertex of S is matched to a distinct vertex in $N(S)$
- So $|N(S)| \geq|S|$.

