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Topic 3: Graph theory

Basic definitions and concepts

Characterizations

1. Eulerian graphs: Using degrees of vertices.

2. Bipartite graphs: Using odd length cycles.

3. Connected components: Using cycles.

4. Maximum matchings: Using augmenting paths.

5. Perfect matchings in bipartite graphs: Using neighbour
sets. – Hall’s theorem
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Recap: Matchings

Definitions
I Matching: set of edges with no shared end-points.

I The vertices incident to edges in a matching are called
saturated. Others are unsaturated.

I Perfect matching: saturates every vertex in graph.

I Maximum matching: matching of maximum size (# edges).

I Maximal matching: cannot be enlarged by adding an edge.
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Recap: Matchings

Definitions
I Matching: set of edges with no shared end-points.

I The vertices incident to edges in a matching are called
saturated. Others are unsaturated.

I Perfect matching: saturates every vertex in graph.

I Maximum matching: matching of maximum size (# edges).

I Maximal matching: cannot be enlarged by adding an edge.

I M -alternating path: alternates between edges in/out of M .

I M -augmenting path: An M -alternating path whose
endpoints are unsaturated by M .
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Recap: Matchings

Definitions
I Matching: set of edges with no shared end-points.

I The vertices incident to edges in a matching are called
saturated. Others are unsaturated.

I Perfect matching: saturates every vertex in graph.

I Maximum matching: matching of maximum size (# edges).

I Maximal matching: cannot be enlarged by adding an edge.

I M -alternating path: alternates between edges in/out of M .

I M -augmenting path: An M -alternating path whose
endpoints are unsaturated by M .

Theorem

A matching M in G is a maximum matching iff G has no
M -augmenting path.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

I For v ∈ V , its neighbour-set N(v) = {u ∈ V | (u, v) ∈ E}.
I For S ⊆ V , N(S) = {u ∈ V | (u, v) ∈ E for some v ∈ S}.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: ( =⇒ ) is straightforward:

I Let M be a matching.

I Then for any S ⊆ X, each vertex of S is matched to a
distinct vertex in N(S)

I So |N(S)| ≥ |S|.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

I Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

I Contrapositive:
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A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

I Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

I Contrapositive: If G does not have any matching that
saturates X, then there must exist S ⊆ X, |N(S)| < |S|.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

I Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

I Contrapositive: If G does not have any matching that
saturates X, then there must exist S ⊆ X, |N(S)| < |S|.

I If G does not have any matching that saturates X, then
surely any maximum matching of G does not saturate X.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

I Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

I Contrapositive: If G does not have any matching that
saturates X, then there must exist S ⊆ X, |N(S)| < |S|.

I If G does not have any matching that saturates X, then
surely any maximum matching of G does not saturate X.

I Let M be such a maximum matching. Then, we will
construct S ⊆ X s.t. |N(S)| < |S|.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
I Let u ∈ X be any unsaturated vertex of M .
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
I Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u
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Claim: M matches T with S \ {u} and |N(S)| = |T |.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
I Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u

Claim: M matches T with S \ {u} and |N(S)| = |T |.
I Every vertex of S \ {u} has an edge in M to a vertex in T .
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
I Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .
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Claim: M matches T with S \ {u} and |N(S)| = |T |.
I Every vertex of S \ {u} has an edge in M to a vertex in T .

I Every vertex of T extends via M to a unique vertex of S.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
I Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u

Claim: M matches T with S \ {u} and |N(S)| = |T |.
I Every vertex of S \ {u} has an edge in M to a vertex in T .

I Every vertex of T extends via M to a unique vertex of S.

I Thus, there is a bijection between T and S \ {u}.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.
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Claim: M matches T with S \ {u} and |N(S)| = |T |.
I T ⊆ N(S) (from T any M -alternating path will reach S).
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
I Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u

Claim: M matches T with S \ {u} and |N(S)| = |T |.
I T ⊆ N(S) (from T any M -alternating path will reach S).

I Conversely, if v ∈ S has edge to y ∈ Y \ T , then path from
u to v via M to y is an M -alternating path, implies y ∈ T .
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
I Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u

Claim: M matches T with S \ {u} and |N(S)| = |T |.
Thus, |N(S)| = |T | = |S| − 1 < |S| .
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

I In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

I What is the formal statement?
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A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

I In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

I For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

I In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

I For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

I If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
(why?)
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

I In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

I For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

I If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
I If a matching saturates X then it saturates Y .

5



Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

I In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

I For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

I If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
I If a matching saturates X then it saturates Y .

I Can you now verify Hall’s condition?
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.
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A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.
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compatible with k men and every man compatible with k
women, then a perfect matching must exist!
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I If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
I If a matching saturates X then it saturates Y .

I Let S ⊆ X. Let m = # edges from S to N(S).
I Since G is k-regular, m = k|S|. And since they touch N(S),

m ≤ k|N(S)|.
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

I In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

I For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

I If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
I If a matching saturates X then it saturates Y .

I Let S ⊆ X. Let m = # edges from S to N(S).
I Since G is k-regular, m = k|S|. And since they touch N(S),

m ≤ k|N(S)|. Hence k|S| ≤ k|N(S)|, k > 0 completes
proof.
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Let’s play a game

A two player game on a graph

1. Given a graph G, two players will alternatively choose
distinct vertices.

2. One player starts by choosing any vertex.

3. Subsequent move must be adjacent to preceding choice (of
other player).

4. Last player who can move wins.
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Let’s play a game

A two player game on a graph

1. Given a graph G, two players will alternatively choose
distinct vertices.

2. One player starts by choosing any vertex.

3. Subsequent move must be adjacent to preceding choice (of
other player).

4. Last player who can move wins.

Two volunteers please. Who wants to start?

X

Y

Theorem (H.W: Qn 3.1.18 from Douglas West)

If G has a perfect matching, then player 2 has a winning
strategy; otherwise, player 1 has a winning strategy.
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