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Topic 3: Graph theory

Topics in Graph theory

1. Basics concepts and definitions.

2. Eulerian graphs: Using degrees of vertices.

3. Bipartite graphs: Using odd length cycles.

4. Connected components: Using cycles.

5. Maximum matchings: Using augmenting paths.

6. Perfect matchings in bipartite graphs: Using neighbour
sets. – Hall’s theorem

7. Applications of Hall’s theorem: Minimum vertex covers –
Konig-Egervary’s theorem

8. Today: Stable matchings...
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A min-max theorem

Theorem (Konig ’31, Egervary ’31)

If G is a bipartite graph, then the size of the maximum
matching of G equals the size of the minimum vertex cover of G.

Proof.(For details, see Douglas West, Chapter 3.1).

I Size of any vertex cover ≥ size of any matching.

I Thus, it suffices to show that we can achieve a matching
which has size equal to min vertex cover.

I Take a minimum vertex cover Q, partition into R = Q ∩X
and T = Q ∩ Y .

I Consider subgraphs H,H ′ induced by R ∪ (Y \ T ),
T ∪ (X \R).

I Show that H has matching that saturates R into Y \ T ; H ′

has a matching saturating T (Use minimality of Q).

I Together this forms desired matching (∵ H,H ′ are disjoint)
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Next topic: Stable matchings
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Stable matchings
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Boys Girls
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C > B > E > A > D

ABECD

DCBAE

ACDBE

ABDEC

A : 35214

B : 52143

C : 43512

D : 12345

E : 23415

I Let us try a “greedy” marriage strategy for boys.

I Danger! 4 prefers C to B and C prefers 4 to 1. Divorce!

I Qn: Can you match everyone without such Rogue couples?!
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More than just a funny puzzle

I College admissions: Original Gale and Shapley paper, 1962.

I Matching hospitals and residents.

I Matching dancing partners.

I Matching students with jobs.

I Matching (PG) TAs with courses.

I JEE algorithm...
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Stable matchings

Definition

Given a matching M in a graph with preference lists of nodes.

I Unstable pair: Two vertices x, y such that x prefers y to its
assigned vertex and vice versa.

I x, y would be happier by eloping.

I Qn: Find a perfect matching with no unstable pairs. Such
a matching is called a Stable Matching.
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Roommates Problem

A : BCD

B : CAD

C : ABD

D : ABC

A B

C

D

I What can you observe from this?
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I What can you observe from this?
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Roommates Problem

A : BCD

B : CAD

C : ABD

D : ABC

A B

C

D

I What can you observe from this?

I Stable matchings don’t always exist.

I So, do they exist for bipartite graphs and how can we prove
this?

8



The proposal algorithm

Given: bipartite graph, preference list for n men/women

I 8am: Every man goes to first woman on his list not yet
crossed off, and proposes to her!
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Given: bipartite graph, preference list for n men/women

I 8am: Every man goes to first woman on his list not yet
crossed off, and proposes to her!

I 6pm: Every woman says “maybe” to the man she likes best
among the proposals, and says “never” to all others!

I 10pm: Each rejected suitor crosses off woman from his list.

The above loop is repeated every day until there are no more
rejected suitors. On that day, the women says “yes” to her
“maybe” guy!

I Does this algorithm terminate?

I If yes, does it produce a stable matching when it
terminates?
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Termination and Correctness of the proposal algo

I Try out the algo on the example.
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