CS 105: DIC on Discrete Structures

Graph theory
Stable matchings

Lecture 34
Nov 072023

Topic 3: Graph theory

Topics in Graph theory

1. Basics concepts and definitions.
2. Eulerian graphs: Using degrees of vertices.
3. Bipartite graphs: Using odd length cycles.
4. Connected components: Using cycles.
5. Maximum matchings: Using augmenting paths.
6. Perfect matchings in bipartite graphs: Using neighbour sets. - Hall's theorem
7. Applications of Hall's theorem: Minimum vertex covers -Konig-Egervary's theorem

Topic 3: Graph theory

Topics in Graph theory

1. Basics concepts and definitions.
2. Eulerian graphs: Using degrees of vertices.
3. Bipartite graphs: Using odd length cycles.
4. Connected components: Using cycles.
5. Maximum matchings: Using augmenting paths.
6. Perfect matchings in bipartite graphs: Using neighbour sets. - Hall's theorem
7. Applications of Hall's theorem: Minimum vertex covers -Konig-Egervary's theorem
8. Today: Stable matchings...

A min-max theorem

Theorem (Konig '31, Egervary '31)

If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

A min-max theorem

Theorem (Konig '31, Egervary '31)

If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof.(For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \geq size of any matching.

A min-max theorem

Theorem (Konig '31, Egervary '31)

If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof.(For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \geq size of any matching.
- Thus, it suffices to show that we can achieve a matching which has size equal to min vertex cover.

A min-max theorem

Theorem (Konig '31, Egervary '31)

If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof.(For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \geq size of any matching.
- Thus, it suffices to show that we can achieve a matching which has size equal to min vertex cover.
- Take a minimum vertex cover Q, partition into $R=Q \cap X$ and $T=Q \cap Y$.

A min-max theorem

Theorem (Konig '31, Egervary '31)

If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof.(For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \geq size of any matching.
- Thus, it suffices to show that we can achieve a matching which has size equal to min vertex cover.
- Take a minimum vertex cover Q, partition into $R=Q \cap X$ and $T=Q \cap Y$.
- Consider subgraphs H, H^{\prime} induced by $R \cup(Y \backslash T)$, $T \cup(X \backslash R)$.

A min-max theorem

Theorem (Konig '31, Egervary '31)

If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof.(For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \geq size of any matching.
- Thus, it suffices to show that we can achieve a matching which has size equal to min vertex cover.
- Take a minimum vertex cover Q, partition into $R=Q \cap X$ and $T=Q \cap Y$.
- Consider subgraphs H, H^{\prime} induced by $R \cup(Y \backslash T)$, $T \cup(X \backslash R)$.
- Show that H has matching that saturates R into $Y \backslash T ; H^{\prime}$ has a matching saturating T (Use minimality of Q).

A min-max theorem

Theorem (Konig '31, Egervary '31)

If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof.(For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \geq size of any matching.
- Thus, it suffices to show that we can achieve a matching which has size equal to min vertex cover.
- Take a minimum vertex cover Q, partition into $R=Q \cap X$ and $T=Q \cap Y$.
- Consider subgraphs H, H^{\prime} induced by $R \cup(Y \backslash T)$, $T \cup(X \backslash R)$.
- Show that H has matching that saturates R into $Y \backslash T ; H^{\prime}$ has a matching saturating T (Use minimality of Q).
- Together this forms desired matching $\left(\because H, H^{\prime}\right.$ are disjoint $)$

Next topic: Stable matchings

Stable matchings

Boys

- 1
- 2
- 3
- 4
- 5

Girls

- A
- B
- C
- D
- E

Stable matchings

$$
\begin{aligned}
\text { Boys } & \text { Girls } \\
C>B>E>A>D \cdot 1 & \bullet A: 35214 \\
A B E C D \cdot 2 & \bullet B: 52143 \\
D C B A E \cdot 3 & \bullet C: 43512 \\
A C D B E \cdot 4 & \bullet D: 12345 \\
A B D E C \cdot 5 & \bullet E: 23415
\end{aligned}
$$

Stable matchings

$$
\begin{aligned}
\text { Boys } & \text { Girls } \\
C>B>E>A>D \cdot 1 & \bullet A: 35214 \\
A B E C D \cdot 2 & \\
D C B A E \cdot 3 & \bullet: 52143 \\
A C D B E \cdot 4 & \bullet D: 12345 \\
A B D E C \cdot 5 & \bullet E: 23415
\end{aligned}
$$

- Let us try a "greedy" marriage strategy for boys.

Stable matchings

- Let us try a "greedy" marriage strategy for boys.

Stable matchings

- Let us try a "greedy" marriage strategy for boys.

Stable matchings

- Let us try a "greedy" marriage strategy for boys.
- Danger!

Stable matchings

- Let us try a "greedy" marriage strategy for boys.
- Danger! 4 prefers C to B and C prefers 4 to 1 . Divorce!

Stable matchings

$$
\text { Boys } \quad \text { Girls }
$$

$A B D E C \cdot 5 \longrightarrow E: 23415$

- Let us try a "greedy" marriage strategy for boys.
- Danger! 4 prefers C to B and C prefers 4 to 1 . Divorce!
- Qn: Can you match everyone without such Rogue couples?!

More than just a funny puzzle

- College admissions: Original Gale and Shapley paper, 1962.
- Matching hospitals and residents.
- Matching dancing partners.
- Matching students with jobs.

More than just a funny puzzle

- College admissions: Original Gale and Shapley paper, 1962.
- Matching hospitals and residents.
- Matching dancing partners.
- Matching students with jobs.
- Matching (PG) TAs with courses.
- JEE algorithm...

Stable matchings

Definition

Given a matching M in a graph with preference lists of nodes.

- Unstable pair: Two vertices x, y such that x prefers y to its assigned vertex and vice versa.
- x, y would be happier by eloping.
- Qn: Find a perfect matching with no unstable pairs. Such a matching is called a Stable Matching.

Roommates Problem

- $A: B C D$
- $B: C A D$
- $C: A B D$

- D
- $D: A B C$
- What can you observe from this?

Roommates Problem

- $A: B C D$
- $B: C A D$
- $C: A B D$

- D
- $D: A B C$
- What can you observe from this?
- Everybody hates D.

Roommates Problem

- $A: B C D$
- $B: C A D$
- $C: A B D$

- D
- $D: A B C$
- What can you observe from this?
- Stable matchings don't always exist.

Roommates Problem

- $A: B C D$
- B : CAD
- $C: A B D$

- D
- $D: A B C$
- What can you observe from this?
- Stable matchings don't always exist.
- So, do they exist for bipartite graphs and how can we prove this?

The proposal algorithm

Given: bipartite graph, preference list for $n \mathrm{men} /$ women

- 8am: Every man goes to first woman on his list not yet crossed off, and proposes to her!

The proposal algorithm

Given: bipartite graph, preference list for $n \mathrm{men} /$ women

- 8am: Every man goes to first woman on his list not yet crossed off, and proposes to her!
- 6pm: Every woman says "maybe" to the man she likes best among the proposals, and says "never" to all others!

The proposal algorithm

Given: bipartite graph, preference list for n men/women

- 8am: Every man goes to first woman on his list not yet crossed off, and proposes to her!
- 6pm: Every woman says "maybe" to the man she likes best among the proposals, and says "never" to all others!
- 10pm: Each rejected suitor crosses off woman from his list.

The proposal algorithm

Given: bipartite graph, preference list for n men/women

- 8am: Every man goes to first woman on his list not yet crossed off, and proposes to her!
- 6pm: Every woman says "maybe" to the man she likes best among the proposals, and says "never" to all others!
- 10pm: Each rejected suitor crosses off woman from his list.

The above loop is repeated every day until there are no more rejected suitors. On that day, the women says "yes" to her "maybe" guy!

The proposal algorithm

Given: bipartite graph, preference list for n men/women

- 8am: Every man goes to first woman on his list not yet crossed off, and proposes to her!
- 6pm: Every woman says "maybe" to the man she likes best among the proposals, and says "never" to all others!
- 10pm: Each rejected suitor crosses off woman from his list.

The above loop is repeated every day until there are no more rejected suitors. On that day, the women says "yes" to her "maybe" guy!

- Does this algorithm terminate?
- If yes, does it produce a stable matching when it terminates?

Termination and Correctness of the proposal algo

- Try out the algo on the example.

