CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay

Jul 30, 2024

Lecture 02 – Propositions, Predicates and Theorems

1

Logistics and recap

Course material, references are being posted at

http://www.cse.iitb.ac.in/~akshayss/teaching.html

Logistics and recap

Course material, references are being posted at

- http://www.cse.iitb.ac.in/~akshayss/teaching.html
- ▶ Join Piazza if haven't already done so:
 - https://piazza.com/iit_bombay/fall2024/cs105

Logistics and recap

Course material, references are being posted at

- http://www.cse.iitb.ac.in/~akshayss/teaching.html
- ▶ Join Piazza if haven't already done so:
 - https://piazza.com/iit_bombay/fall2024/cs105

Recap of last lecture

- ▶ What are discrete structures?
- ► Course outline
- ▶ Chapter 1: Proofs and structures
 - ▶ Propositions: statements that can be assigned a truth value
 - We denote them using variables p, q, \dots

Figure: George Boole (1815 – 1864) Combining propositions

▶ $\neg p$: It is not raining

Figure: George Boole (1815 – 1864)

Combining propositions

 $\triangleright \neg p$: It is not raining

▶ $p \lor q$: It is raining or there is a sprinkler overhead.

Figure: George Boole (1815 – 1864)

- ▶ $\neg p$: It is not raining
- ▶ $p \lor q$: It is raining or there is a sprinkler overhead.
- ▶ $p \land q$: It is raining and I don't have an umbrella

Figure: George Boole (1815 – 1864)

- ▶ $\neg p$: It is not raining
- ▶ $p \lor q$: It is raining or there is a sprinkler overhead.
- ▶ $p \land q$: It is raining and I don't have an umbrella
- ▶ $p \rightarrow q$: If it is raining then it will be wet.

Figure: George Boole (1815 – 1864)

- ▶ $\neg p$: It is not raining
- ▶ $p \lor q$: It is raining or there is a sprinkler overhead.
- ▶ $p \land q$: It is raining and I don't have an umbrella
- ▶ $p \rightarrow q$: If it is raining then it will be wet.
- ▶ If it is raining or there is a sprinkler overhead and I dont have an umbrella, then I will get wet

Figure: George Boole (1815 – 1864)

- ▶ $\neg p$: It is not raining
- ▶ $p \lor q$: It is raining or there is a sprinkler overhead.
- ▶ $p \land q$: It is raining and I don't have an umbrella
- ▶ $p \rightarrow q$: If it is raining then it will be wet.
- ▶ If it is raining or there is a sprinkler overhead and I dont have an umbrella, then I will get wet: $((p \lor q) \land r) \rightarrow s$.

Figure: George Boole (1815 – 1864)

- $\blacktriangleright \neg p$: It is not raining
- ▶ $p \lor q$: It is raining or there is a sprinkler overhead.
- ▶ $p \land q$: It is raining and I don't have an umbrella
- ▶ $p \rightarrow q$: If it is raining then it will be wet.
- ▶ If it is raining or there is a sprinkler overhead and I dont have an umbrella, then I will get wet: $((p \lor q) \land r) \rightarrow s$.
- ▶ $p \leftrightarrow q$: p if and only if q (also written p iff q) "same as" or logically equivalent to $(p \rightarrow q) \land (q \rightarrow p)$

 $p \wedge q$

F

 \mathbf{F}

 \mathbf{F}

Т

- ▶ $\neg p$: It is not raining
- ▶ $p \lor q$: It is raining or there is a sprinkler overhead.
- ▶ $p \land q$: It is raining and I don't have an umbrella

p	q	$p \lor q$	$p \wedge q$	$p \rightarrow q$
F	F	F	F	Т
F	Т	Т	F	Т
Т	F	Т	F	F
Т	Т	Т	Т	Т

- ▶ $\neg p$: It is not raining
- ▶ $p \lor q$: It is raining or there is a sprinkler overhead.
- ▶ $p \land q$: It is raining and I don't have an umbrella
- ▶ $p \rightarrow q$: If I am elected then I will lower taxes.

p	q	$p \vee q$	$p \wedge q$	$p \rightarrow q$
F	\mathbf{F}	\mathbf{F}	F	Т
F	Т	Т	F	Т
Т	F	Т	F	F
Т	Т	Т	Т	Т

 $\blacktriangleright \neg p$: It is not raining

▶ $p \lor q$: It is raining or there is a sprinkler overhead.

- ▶ $p \land q$: It is raining and I don't have an umbrella
- ▶ $p \rightarrow q$: If I am elected then I will lower taxes.

Logical Equivalence: Truth tables are identical!

▶ $p \leftrightarrow q$ is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$

p	$\neg p$
Т	F
F	Т

p	q	$p \lor q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
F	F	F	F	Т	Т
F	Т	Т	F	Т	F
Т	F	Т	F	F	F
Т	Т	Т	Т	Т	Т

- $\blacktriangleright \neg p$: It is not raining
- ▶ $p \lor q$: It is raining or there is a sprinkler overhead.
- ▶ $p \land q$: It is raining and I don't have an umbrella
- ▶ $p \rightarrow q$: If I am elected then I will lower taxes.

Logical Equivalence: Truth tables are identical!

▶ $p \leftrightarrow q$ is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$

p	$\neg p$
Т	F
F	Т

p	q	$p \lor q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
F	F	F	F	Т	Т
F	Т	Т	F	Т	F
Т	F	Т	F	F	F
Т	Т	Т	Т	Т	Т

- $\blacktriangleright \neg p$: It is not raining
- ▶ $p \lor q$: It is raining or there is a sprinkler overhead.
- ▶ $p \land q$: It is raining and I don't have an umbrella
- ▶ $p \rightarrow q$: If I am elected then I will lower taxes.

Logical Equivalence: Truth tables are identical!

- ▶ $p \leftrightarrow q$ is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$
- ▶ You will pass this course iff you score $\geq 10/40$ in endsem and $\geq 15/60$ in rest.

p	$\neg p$
Т	F
F	Т

p	q	$p \lor q$	$p \wedge q$	$p \rightarrow q$	$p \leftrightarrow q$
F	F	F	F	Т	Т
F	Т	Т	F	Т	F
Т	F	Т	F	F	F
Т	Т	Т	Т	Т	Т

- $\blacktriangleright \neg p$: It is not raining
- ▶ $p \lor q$: It is raining or there is a sprinkler overhead.
- ▶ $p \land q$: It is raining and I don't have an umbrella
- ▶ $p \rightarrow q$: If I am elected then I will lower taxes.

Logical Equivalence: Truth tables are identical!

- ▶ $p \leftrightarrow q$ is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$
- ▶ You will pass this course iff you score $\geq 10/40$ in endsem and $\geq 15/60$ in rest.

Warning: English can be imprecise, but logic is precise!

Moving on...

Moving on...

Consider again...

$$(n+1)(n-1) = (n^2 - 1)$$

 $x = y + 8$

Moving on...

Consider again...

►
$$\forall n$$
 $(n+1)(n-1) = (n^2 - 1)$

$$\blacktriangleright \quad \forall x, \exists y, \qquad \qquad x = y + 8$$

∀n stands for all values of n in a given domain
∃n stands for exists n

Moving on...

Consider again...

$$\blacktriangleright \forall n \in \mathbb{N} \ (n+1)(n-1) = (n^2 - 1)$$

$$\blacktriangleright \ \forall x, \exists y, x, y \in \mathbb{Z} \ x = y + 8$$

- ▶ $\forall n$ stands for all values of n in a given domain
- $\blacktriangleright \exists n \text{ stands for exists } n$
- \blacktriangleright \in is the element of symbol
- \blacktriangleright N stands for all natural numbers
- \triangleright Z stands for all integers
- ▶ ℝ, ℚ, ...

Some propositions are not so easy to "determine"... – e.g., $2^{67} - 1$ is not a prime.

Predicates

• x = y + 8 is a property of x, y, so we can write, P(x, y)

Predicates

- x = y + 8 is a property of x, y, so we can write, P(x, y)
- If we fix values to x, y it becomes a proposition!

Predicates

- ▶ x = y + 8 is a property of x, y, so we can write, P(x, y)
- If we fix values to x, y it becomes a proposition!
- e.g., P(2,4), P(1,7) are propositions.

Predicates

▶ x = y + 8 is a property of x, y, so we can write, P(x, y)

• If we fix values to x, y it becomes a proposition!

• e.g., P(2,4), P(1,7) are propositions.

In some sense, predicates are propositions with holes/variables!

Predicates

▶ x = y + 8 is a property of x, y, so we can write, P(x, y)

• If we fix values to x, y it becomes a proposition!

• e.g., P(2,4), P(1,7) are propositions.

In some sense, predicates are propositions with holes/variables!

How can we fill the hole?

▶ By fixing values from the domain of discourse, e.g., \mathbb{N}, \mathbb{R} .

Predicates

▶ x = y + 8 is a property of x, y, so we can write, P(x, y)

• If we fix values to x, y it becomes a proposition!

• e.g., P(2,4), P(1,7) are propositions.

In some sense, predicates are propositions with holes/variables!

- ▶ By fixing values from the domain of discourse, e.g., \mathbb{N}, \mathbb{R} .
- ▶ By Existential Quantification e.g., $\exists x(x > x^2)$

Predicates

- ▶ x = y + 8 is a property of x, y, so we can write, P(x, y)
- If we fix values to x, y it becomes a proposition!
- e.g., P(2,4), P(1,7) are propositions.

In some sense, predicates are propositions with holes/variables!

- ▶ By fixing values from the domain of discourse, e.g., \mathbb{N}, \mathbb{R} .
- ▶ By Existential Quantification e.g., $\exists x(x > x^2)$
- ▶ By Universal Quantification e.g., $\forall x(x+5 > x)$

Predicates

▶ x = y + 8 is a property of x, y, so we can write, P(x, y)

- If we fix values to x, y it becomes a proposition!
- e.g., P(2,4), P(1,7) are propositions.

In some sense, predicates are propositions with holes/variables!

- ▶ By fixing values from the domain of discourse, e.g., \mathbb{N}, \mathbb{R} .
- ▶ By Existential Quantification e.g., $\exists x(x > x^2)$
- ▶ By Universal Quantification e.g., $\forall x(x+5 > x)$
- ▶ One can also combine and nest quantifiers!

Predicates

▶ x = y + 8 is a property of x, y, so we can write, P(x, y)

- If we fix values to x, y it becomes a proposition!
- e.g., P(2,4), P(1,7) are propositions.

In some sense, predicates are propositions with holes/variables!

How can we fill the hole?

- ▶ By fixing values from the domain of discourse, e.g., \mathbb{N}, \mathbb{R} .
- ▶ By Existential Quantification e.g., $\exists x(x > x^2)$
- ▶ By Universal Quantification e.g., $\forall x(x+5 > x)$
- ▶ One can also combine and nest quantifiers!

 $\blacktriangleright \quad \forall x(\neg(x=0) \to \exists y(xy=1))$

Predicates

▶ x = y + 8 is a property of x, y, so we can write, P(x, y)

- If we fix values to x, y it becomes a proposition!
- e.g., P(2,4), P(1,7) are propositions.

In some sense, predicates are propositions with holes/variables!

- ▶ By fixing values from the domain of discourse, e.g., \mathbb{N}, \mathbb{R} .
- ▶ By Existential Quantification e.g., $\exists x(x > x^2)$
- ▶ By Universal Quantification e.g., $\forall x(x+5 > x)$
- ▶ One can also combine and nest quantifiers!
 - $\blacktriangleright \quad \forall x(\neg(x=0) \to \exists y(xy=1))$
 - $\blacktriangleright \forall x (L(x) \lor \exists y (L(y) \land F(x, y)))$

Predicates

▶ x = y + 8 is a property of x, y, so we can write, P(x, y)

- If we fix values to x, y it becomes a proposition!
- e.g., P(2,4), P(1,7) are propositions.

In some sense, predicates are propositions with holes/variables!

How can we fill the hole?

- ▶ By fixing values from the domain of discourse, e.g., \mathbb{N}, \mathbb{R} .
- ▶ By Existential Quantification e.g., $\exists x(x > x^2)$
- ▶ By Universal Quantification e.g., $\forall x(x+5 > x)$
- ▶ One can also combine and nest quantifiers!
 - $\blacktriangleright \quad \forall x(\neg(x=0) \to \exists y(xy=1))$

► $\forall x(L(x) \lor \exists y(L(y) \land F(x,y)))$ Fix Domain = students in this class; L(x) = x has a laptop; F(x,y) = x, y are friends.

Predicates

▶ x = y + 8 is a property of x, y, so we can write, P(x, y)

- If we fix values to x, y it becomes a proposition!
- e.g., P(2,4), P(1,7) are propositions.

In some sense, predicates are propositions with holes/variables!

- ▶ By fixing values from the domain of discourse, e.g., \mathbb{N}, \mathbb{R} .
- ▶ By Existential Quantification e.g., $\exists x(x > x^2)$
- ▶ By Universal Quantification e.g., $\forall x(x+5 > x)$
- ▶ One can also combine and nest quantifiers!
 - $\blacktriangleright \quad \forall x(\neg(x=0) \to \exists y(xy=1))$
 - ► $\forall x(L(x) \lor \exists y(L(y) \land F(x,y)))$ Fix Domain = students in this class; L(x) = x has a laptop; F(x,y) = x, y are friends.
 - All students in this class have a laptop or have a friend who has a laptop.

A theorem is a proposition which can be shown true

Classwork: Prove the following theorems.

- 1. $\neg(p \land q)$ is logically equivalent to $\neg p \lor \neg q$
- 2. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$.
- 3. If 6 is prime, then $6^2 = 30$.
- 4. For all $x \in \mathbb{Z}$, x is an even iff $x + x^2 x^3$ is even.

A theorem is a proposition which can be shown true

Classwork: Prove the following theorems.

- 1. $\neg(p \land q)$ is logically equivalent to $\neg p \lor \neg q$
- 2. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$.
- 3. If 6 is prime, then $6^2 = 30$.
- 4. For all $x \in \mathbb{Z}$, x is an even iff $x + x^2 x^3$ is even.
- 5. There are infinitely many prime numbers.
- 6. There exist irrational numbers x, y such that x^y is rational.
- 7. For all $n \in \mathbb{N}$, $n! \leq n^n$.
- 8. There does not exist a program which will always determine whether an arbitrary (input-free) program will halt.

Contrapositive and converse

▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".

- ▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".
- A statement is logically equivalent to its contrapositive, i.e., it suffices to show one to imply the other.

- ▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".
- A statement is logically equivalent to its contrapositive, i.e., it suffices to show one to imply the other.
- ▶ i.e., $p \to q$ is logically equivalent to $\neg q \to \neg p$ (check this!)

- ▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".
- A statement is logically equivalent to its contrapositive, i.e., it suffices to show one to imply the other.
- ▶ i.e., $p \to q$ is logically equivalent to $\neg q \to \neg p$ (check this!)
- ▶ To show A iff B, you have to show A implies B and conversely, B implies A.

- ▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".
- A statement is logically equivalent to its contrapositive, i.e., it suffices to show one to imply the other.
- ▶ i.e., $p \to q$ is logically equivalent to $\neg q \to \neg p$ (check this!)
- To show A iff B, you have to show A implies B and conversely, B implies A.
- ▶ Note the difference between contrapositive and converse.