
CS 105: Department Introductory Course
on Discrete Structures

Instructor : S. Akshay

Aug 01, 2024

Lecture 03 – Theorems, types of proofs
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Logistics and recap

Course material, references are being posted at

▶ http://www.cse.iitb.ac.in/~akshayss/teaching.html

▶ Join Piazza if haven’t already done so:
▶ https://piazza.com/iit_bombay/fall2024/cs105

Recap of two lectures

▶ What are discrete structures?

▶ Course outline

▶ Chapter 1: Proofs and structures
▶ Propositions: statements that can be assigned a truth value
▶ Predicates: propositions with variables
▶ Quantifiers
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A bit more about quantifiers

Negating Quantifiers

▶ What is the negation of “All students have MA105”?
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Theorems and proofs

A theorem is a proposition which can be shown true

Classwork: Prove the following theorems.

1. ¬(p ∧ q) is logically equivalent to ¬p ∨ ¬q
2. For all a, b, c ∈ R≥0, if a2 + b2 = c2, then a+ b ≥ c.

3. If 6 is prime, then 62 = 30.

4. For all x ∈ Z, x is an even iff x+ x2 − x3 is even.

5. There are infinitely many prime numbers.

6. There exist irrational numbers x, y such that xy is rational.

7. For all n ∈ N, n! ≤ nn.

8. There does not exist a program which will always determine
whether an arbitrary (input-free) program will halt.

4



Theorems and proofs

A theorem is a proposition which can be shown true

Classwork: Prove the following theorems.

1. ¬(p ∧ q) is logically equivalent to ¬p ∨ ¬q
2. For all a, b, c ∈ R≥0, if a2 + b2 = c2, then a+ b ≥ c.

3. If 6 is prime, then 62 = 30.

4. For all x ∈ Z, x is an even iff x+ x2 − x3 is even.

5. There are infinitely many prime numbers.

6. There exist irrational numbers x, y such that xy is rational.

7. For all n ∈ N, n! ≤ nn.

8. There does not exist a program which will always determine
whether an arbitrary (input-free) program will halt.

4



Theorems and proofs

Contrapositive and converse

▶ The contrapositive of “if A then B” is “if ¬B then ¬A”.

▶ A statement is logically equivalent to its contrapositive,
i.e., it suffices to show one to imply the other.

▶ i.e., p → q is logically equivalent to ¬q → ¬p (check this!)

▶ The converse of “if A then B” is “if B then A”.

▶ Common mistake: Contrapositive not the same as converse!

To show “A iff B”, you must show two things:

1. A implies B and

2. its converse, B implies A OR ¬A implies ¬B.
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Proof of Theorem 4

Theorem 4.: For all x ∈ Z, x is even iff x+ x2 − x3 is even.

Two directions.

▶ Forward direction ( =⇒ )

1. Let x ∈ Z and x even.
2. i.e., x = 2k for some k ∈ Z.
3. Then x+ x2 − x3 = 2k + 4k2 − 8k3 = 2(k + 2k2 − 4k3)

which is even.

▶ Reverse direction (⇐=)

1. We will show contrapositive! i.e., x is not even =⇒
x+x2−x3 is not even, i.e., x is odd =⇒ x+x2−x3 is odd.

2. Let x ∈ Z be odd, i.e., x = 2k + 1 for some k ∈ Z.
3. Then x+ x2 − x3 is odd! (check this!). Hence proved.
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A Non-constructive proof

Theorem 6.: There exist irrational numbers x and y such
that xy is rational.

Proof:

▶ Consider
√
2. First show that

√
2 is irrational.

▶ Let x = y =
√
2 and consider z =

√
2
√
2
.

▶ Case 1: If z is rational, we are done (why?)

▶ Case 2: Else z is irrational.

▶ Then consider z
√
2 = (

√
2
√
2
)
√
2 = (

√
2)2 = 2.

▶ Thus we have found two irrationals x = z =
√
2
√
2
, y =

√
2

such that xy = 2 is rational.
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Types of proofs

1. ¬(p ∧ q) is logically equivalent to ¬p ∨ ¬q

– By truth tables

2. For all a, b, c ∈ R≥0, if a2 + b2 = c2, then a+ b ≥ c.

– Direct proof

3. If 6 is prime, then 62 = 30.

– Vacuous/trivial proof

4. x is an even integer iff x+ x2 − x3 is even.

– Both directions, by contrapositive (A → B = ¬B → ¬A)

5. There are infinitely many prime numbers.

– Proof by contradiction

6. There exist irrational numbers x, y such that xy is rational.

– Non-constructive proof

7. For all n ∈ N, n! ≤ nn.

8. There does not exist a (input-free) program which will
always determine whether an arbitrary (input-free)
program will halt.
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