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Recap of two lectures

» What are discrete structures?

» Course outline
» Chapter 1: Proofs and structures

» Propositions: statements that can be assigned a truth value
» Predicates: propositions with variables
P> Quantifiers


http://www.cse.iitb.ac.in/~akshayss/teaching.html
https://piazza.com/iit_bombay/fall2024/cs105

A bit more about quantifiers

Negating Quantifiers
» What is the negation of “All students have MA105”7



A bit more about quantifiers

Negating Quantifiers
» What is the negation of “All students have MA105”7
There exists a student who does not have MA105.



A bit more about quantifiers

Negating Quantifiers
» What is the negation of “All students have MA105”7
There exists a student who does not have MA105.
> —VoP(xr) = 3Jx-P(z) !

1= stands for “is logically equivalent to”.



A bit more about quantifiers

Negating Quantifiers
» What is the negation of “All students have MA105”7

There exists a student who does not have MA105.
> —VoP(x) = 3dz-P(z) !
> —VxP(x) is true iff Ve P(x) is false

» ViP(x) is false iff there is some z s.t. =P(z) is true.
> ie., Jx-P(x).

1= stands for “is logically equivalent to”.



A bit more about quantifiers

Negating Quantifiers
» What is the negation of “All students have MA105”7
There exists a student who does not have MA105.
> —VoP(x) = 3dz-P(z) !
> —VxP(x) is true iff Ve P(x) is false

» ViP(x) is false iff there is some z s.t. =P(z) is true.
> ie., Jx-P(x).

» —JzP(x) = Va—P(x)

1= stands for “is logically equivalent to”.



A bit more about quantifiers

Negating Quantifiers
» What is the negation of “All students have MA105”7

There exists a student who does not have MA105.
> —VoP(x) = 3dz-P(z) !
> —VxP(x) is true iff Ve P(x) is false

» ViP(x) is false iff there is some z s.t. =P(z) is true.
> ie., Jx-P(x).

» —JzP(x) = Va—P(x)

Exercises
1. What is the negation of Va (22 > z)?
2. Show that —=Va(P(x) — Q(x)) = Jz(P(x) A ~Q(x)).

1= stands for “is logically equivalent to”.



A bit more about quantifiers

Negating Quantifiers
» What is the negation of “All students have MA105”7

There exists a student who does not have MA105.
> —VoP(x) = 3dz-P(z) !
> —VxP(x) is true iff Ve P(x) is false

» ViP(x) is false iff there is some z s.t. =P(z) is true.
> ie., Jx-P(x).

» —JzP(x) = Va—P(x)

Exercises
1. What is the negation of Va (22 > z)?
2. Show that —=Va(P(x) — Q(x)) = Jz(P(x) A ~Q(x)).

1= stands for “is logically equivalent to”.



A bit more about quantifiers

Negating Quantifiers
» What is the negation of “All students have MA105”7

There exists a student who does not have MA105.
> —VoP(x) = 3dz-P(z) !
> —VxP(x) is true iff Ve P(x) is false

» VYzP(z) is false iff there is some = s.t. = P(x) is true.
> ie., Jx-P(x).

» —JzP(x) = Va—P(x)

Exercises
1. What is the negation of Va (22 > z)?
2. Show that —=Va(P(x) — Q(x)) = Jz(P(x) A ~Q(x)).

3. Use predicates and quantifiers to say “Every email larger
than 10MB will be compressed.”

1= stands for “is logically equivalent to”.



A bit more about quantifiers

Negating Quantifiers
» What is the negation of “All students have MA105”7

There exists a student who does not have MA105.
> —VoP(x) = 3dz-P(z) !
> —VxP(x) is true iff Ve P(x) is false

» VYzP(z) is false iff there is some = s.t. = P(x) is true.
> ie., Jx-P(x).

» —JzP(x) = Va—P(x)

Exercises
1. What is the negation of Va (22 > z)?
2. Show that —=Va(P(x) — Q(x)) = Jz(P(x) A ~Q(x)).

3. Use predicates and quantifiers to say “Every email larger
than 10MB will be compressed.”

1= stands for “is logically equivalent to”.



Theorems and proofs

A theorem is a proposition which can be shown true

Prove the following theorems.
—(p A q) is logically equivalent to —p V —¢
For all a,b,c € RZY, if a®> + b?> = ¢?, then a + b > c.
If 6 is prime, then 62 = 30.

For all x € Z, x is an even iff z + 2?2 — 23

Ll O

1S even.



Theorems and proofs

A theorem is a proposition which can be shown true

Ll O

o N oo

Prove the following theorems.
—(p A q) is logically equivalent to —p V —q
For all a,b,c € RZY, if a®> + b?> = ¢?, then a + b > c.
If 6 is prime, then 62 = 30.

For all x € Z, x is an even iff z + 2?2 — 23

is even.

There are infinitely many prime numbers.

There exist irrational numbers z,y such that x¥ is rational.
For all n € N, n! < n™.

There does not exist a program which will always determine
whether an arbitrary (input-free) program will halt.
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Theorem 6.: There exist irrational numbers z and y such
that x¥ is rational.

Proof:
» Consider v/2. First show that v/2 is irrational.
> Letx=y= V2 and consider z = \/5\/§
» Case 1: If z is rational, we are done (why?)
> Case 2: Else z is irrational.
» Then consider zV2 = (\/5\/5)\/5 = (V2?2 =2

2
» Thus we have found two irrationals z = z = \/Ef, y=12
such that x¥ = 2 is rational. O

Indeed, note that the above proof is not constructive!

(H.W): Post a constructive proof of this theorem on piazza.
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