CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay

Aug 01, 2024

Lecture 03 – Theorems, types of proofs

1

Logistics and recap

Course material, references are being posted at

http://www.cse.iitb.ac.in/~akshayss/teaching.html

Logistics and recap

Course material, references are being posted at

- http://www.cse.iitb.ac.in/~akshayss/teaching.html
- ▶ Join Piazza if haven't already done so:
 - https://piazza.com/iit_bombay/fall2024/cs105

Logistics and recap

Course material, references are being posted at

- http://www.cse.iitb.ac.in/~akshayss/teaching.html
- ▶ Join Piazza if haven't already done so:
 - https://piazza.com/iit_bombay/fall2024/cs105

Recap of two lectures

- ▶ What are discrete structures?
- ► Course outline
- ▶ Chapter 1: Proofs and structures
 - ▶ Propositions: statements that can be assigned a truth value
 - Predicates: propositions with variables
 - Quantifiers

Negating Quantifiers

▶ What is the negation of "All students have MA105"?

Negating Quantifiers

 What is the negation of "All students have MA105"? There exists a student who does not have MA105.

Negating Quantifiers

 What is the negation of "All students have MA105"? There exists a student who does not have MA105.

 $\blacktriangleright \neg \forall x P(x) \equiv \exists x \neg P(x) \ ^1$

 $^{^{1}\}equiv$ stands for "is logically equivalent to".

Negating Quantifiers

 What is the negation of "All students have MA105"? There exists a student who does not have MA105.

$$\neg \forall x P(x) \equiv \exists x \neg P(x)^{-1}$$

- $\neg \forall x P(x)$ is true iff $\forall x P(x)$ is false
- ▶ $\forall x P(x)$ is false iff there is some x s.t. $\neg P(x)$ is true.

• i.e.,
$$\exists x \neg P(x)$$
.

 $^{^{1}\}equiv$ stands for "is logically equivalent to".

Negating Quantifiers

 What is the negation of "All students have MA105"? There exists a student who does not have MA105.

$$\neg \forall x P(x) \equiv \exists x \neg P(x)^{-1}$$

•
$$\neg \forall x P(x)$$
 is true iff $\forall x P(x)$ is false

▶ $\forall x P(x)$ is false iff there is some x s.t. $\neg P(x)$ is true.

• i.e.,
$$\exists x \neg P(x)$$
.

$$\blacktriangleright \neg \exists x P(x) \equiv \forall x \neg P(x)$$

 $^{^{1}\}equiv$ stands for "is logically equivalent to".

Negating Quantifiers

 What is the negation of "All students have MA105"? There exists a student who does not have MA105.

$$\neg \forall x P(x) \equiv \exists x \neg P(x)^{-1}$$

$$\neg \forall x P(x)$$
 is true iff $\forall x P(x)$ is false

▶ $\forall x P(x)$ is false iff there is some x s.t. $\neg P(x)$ is true.

• i.e.,
$$\exists x \neg P(x)$$
.

$$\blacktriangleright \neg \exists x P(x) \equiv \forall x \neg P(x)$$

- 1. What is the negation of $\forall x(x^2 > x)$?
- 2. Show that $\neg \forall x (P(x) \rightarrow Q(x)) \equiv \exists x (P(x) \land \neg Q(x)).$

 $^{^{1}\}equiv$ stands for "is logically equivalent to".

Negating Quantifiers

 What is the negation of "All students have MA105"? There exists a student who does not have MA105.

$$\neg \forall x P(x) \equiv \exists x \neg P(x)^{-1}$$

$$\neg \forall x P(x) \text{ is true iff } \forall x P(x) \text{ is false}$$

▶ $\forall x P(x)$ is false iff there is some x s.t. $\neg P(x)$ is true.

▶ i.e.,
$$\exists x \neg P(x)$$
.

$$\blacktriangleright \neg \exists x P(x) \equiv \forall x \neg P(x)$$

- 1. What is the negation of $\forall x(x^2 > x)$? $\exists x(x^2 \le x)$
- 2. Show that $\neg \forall x (P(x) \rightarrow Q(x)) \equiv \exists x (P(x) \land \neg Q(x)).$

 $^{^{1}\}equiv$ stands for "is logically equivalent to".

Negating Quantifiers

 What is the negation of "All students have MA105"? There exists a student who does not have MA105.

$$\neg \forall x P(x) \equiv \exists x \neg P(x)^{-1}$$

$$\neg \forall x P(x) \text{ is true iff } \forall x P(x) \text{ is false}$$

►
$$\forall x P(x)$$
 is false iff there is some x s.t. $\neg P(x)$ is true.

• i.e.,
$$\exists x \neg P(x)$$
.

$$\blacktriangleright \neg \exists x P(x) \equiv \forall x \neg P(x)$$

- 1. What is the negation of $\forall x(x^2 > x)$? $\exists x(x^2 \le x)$
- 2. Show that $\neg \forall x (P(x) \rightarrow Q(x)) \equiv \exists x (P(x) \land \neg Q(x)).$
- 3. Use predicates and quantifiers to say "Every email larger than 10MB will be compressed."

 $^{^{1}\}equiv$ stands for "is logically equivalent to".

Negating Quantifiers

 What is the negation of "All students have MA105"? There exists a student who does not have MA105.

$$\neg \forall x P(x) \equiv \exists x \neg P(x)^{-1}$$

$$\neg \forall x P(x) \text{ is true iff } \forall x P(x) \text{ is false}$$

▶ $\forall x P(x)$ is false iff there is some x s.t. $\neg P(x)$ is true.

• i.e.,
$$\exists x \neg P(x)$$
.

$$\blacktriangleright \neg \exists x P(x) \equiv \forall x \neg P(x)$$

- 1. What is the negation of $\forall x(x^2 > x)$? $\exists x(x^2 \le x)$
- 2. Show that $\neg \forall x (P(x) \rightarrow Q(x)) \equiv \exists x (P(x) \land \neg Q(x)).$
- 3. Use predicates and quantifiers to say "Every email larger than 10MB will be compressed." $\forall M(S(M, 10) \rightarrow C(M))$

 $^{^{1}\}equiv$ stands for "is logically equivalent to".

A theorem is a proposition which can be shown true

Classwork: Prove the following theorems.

- 1. $\neg(p \land q)$ is logically equivalent to $\neg p \lor \neg q$
- 2. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$.
- 3. If 6 is prime, then $6^2 = 30$.
- 4. For all $x \in \mathbb{Z}$, x is an even iff $x + x^2 x^3$ is even.

A theorem is a proposition which can be shown true

Classwork: Prove the following theorems.

- 1. $\neg(p \land q)$ is logically equivalent to $\neg p \lor \neg q$
- 2. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$.
- 3. If 6 is prime, then $6^2 = 30$.
- 4. For all $x \in \mathbb{Z}$, x is an even iff $x + x^2 x^3$ is even.
- 5. There are infinitely many prime numbers.
- 6. There exist irrational numbers x, y such that x^y is rational.
- 7. For all $n \in \mathbb{N}$, $n! \leq n^n$.
- 8. There does not exist a program which will always determine whether an arbitrary (input-free) program will halt.

Contrapositive and converse

▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".

- ▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".
- A statement is logically equivalent to its contrapositive, i.e., it suffices to show one to imply the other.

- ▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".
- A statement is logically equivalent to its contrapositive, i.e., it suffices to show one to imply the other.
- ▶ i.e., $p \rightarrow q$ is logically equivalent to $\neg q \rightarrow \neg p$ (check this!)

- ▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".
- A statement is logically equivalent to its contrapositive, i.e., it suffices to show one to imply the other.
- ▶ i.e., $p \rightarrow q$ is logically equivalent to $\neg q \rightarrow \neg p$ (check this!)
- ▶ The converse of "if A then B" is "if B then A".

- ▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".
- A statement is logically equivalent to its contrapositive, i.e., it suffices to show one to imply the other.
- ▶ i.e., $p \rightarrow q$ is logically equivalent to $\neg q \rightarrow \neg p$ (check this!)
- ▶ The converse of "if A then B" is "if B then A".
- Common mistake: Contrapositive not the same as converse!

Contrapositive and converse

- ▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".
- A statement is logically equivalent to its contrapositive, i.e., it suffices to show one to imply the other.
- ▶ i.e., $p \rightarrow q$ is logically equivalent to $\neg q \rightarrow \neg p$ (check this!)
- ▶ The converse of "if A then B" is "if B then A".
- Common mistake: Contrapositive not the same as converse!

To show "A iff B", you must show two things:

- 1. A implies B and
- 2. its converse, B implies A

Contrapositive and converse

- ▶ The contrapositive of "if A then B" is "if $\neg B$ then $\neg A$ ".
- A statement is logically equivalent to its contrapositive, i.e., it suffices to show one to imply the other.
- ▶ i.e., $p \to q$ is logically equivalent to $\neg q \to \neg p$ (check this!)
- ▶ The converse of "if A then B" is "if B then A".
- Common mistake: Contrapositive not the same as converse!

To show "A iff B", you must show two things:

- 1. A implies B and
- 2. its converse, B implies A OR $\neg A$ implies $\neg B$.

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even.

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

▶ Forward direction (\implies)

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

- ▶ Forward direction (\implies)
 - 1. Let $x \in \mathbb{Z}$ and x even.

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

- ▶ Forward direction (\implies)
 - 1. Let $x \in \mathbb{Z}$ and x even.
 - 2. i.e., x = 2k for some $k \in \mathbb{Z}$.

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

▶ Forward direction (\implies)

- 1. Let $x \in \mathbb{Z}$ and x even.
- 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
- 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

▶ Forward direction (\implies)

- 1. Let $x \in \mathbb{Z}$ and x even.
- 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
- 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.
- ▶ Reverse direction (\Leftarrow)

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

▶ Forward direction (\implies)

- 1. Let $x \in \mathbb{Z}$ and x even.
- 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
- 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.

▶ Reverse direction (\Leftarrow)

1. We will show contrapositive!

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

▶ Forward direction (\implies)

- 1. Let $x \in \mathbb{Z}$ and x even.
- 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
- 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.

▶ Reverse direction (\Leftarrow)

1. We will show contrapositive! i.e., x is not even $\implies x + x^2 - x^3$ is not even, i.e., x is odd $\implies x + x^2 - x^3$ is odd.

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

▶ Forward direction (\implies)

- 1. Let $x \in \mathbb{Z}$ and x even.
- 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
- 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.

▶ Reverse direction (\Leftarrow)

 We will show contrapositive! i.e., x is not even ⇒ x+x²-x³ is not even, i.e., x is odd ⇒ x+x²-x³ is odd.
 Let x ∈ Z be odd, i.e., x = 2k + 1 for some k ∈ Z.

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

▶ Forward direction (\implies)

- 1. Let $x \in \mathbb{Z}$ and x even.
- 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
- 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.

▶ Reverse direction (\Leftarrow)

 We will show contrapositive! i.e., x is not even ⇒ x+x²-x³ is not even, i.e., x is odd ⇒ x+x²-x³ is odd.
 Let x ∈ Z be odd, i.e., x = 2k + 1 for some k ∈ Z.
 Then x + x² - x³ is odd! (check this!).

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

 \blacktriangleright Forward direction (\Longrightarrow)

- 1. Let $x \in \mathbb{Z}$ and x even.
- 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
- 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.

 \blacktriangleright Reverse direction (\Leftarrow)

- 1. We will show contrapositive! i.e., x is not even \implies $x + x^2 - x^3$ is not even, i.e., x is odd $\implies x + x^2 - x^3$ is odd. 2. Let $x \in \mathbb{Z}$ be odd, i.e., x = 2k + 1 for some $k \in \mathbb{Z}$.
- 3. Then $x + x^2 x^3$ is odd! (check this!). Hence proved.

Theorem 4.: For all $x \in \mathbb{Z}$, x is even iff $x + x^2 - x^3$ is even. Two directions.

▶ Forward direction (\implies)

- 1. Let $x \in \mathbb{Z}$ and x even.
- 2. i.e., x = 2k for some $k \in \mathbb{Z}$.
- 3. Then $x + x^2 x^3 = 2k + 4k^2 8k^3 = 2(k + 2k^2 4k^3)$ which is even.

▶ Reverse direction (\Leftarrow)

- We will show contrapositive! i.e., x is not even ⇒ x+x²-x³ is not even, i.e., x is odd ⇒ x+x²-x³ is odd.
 Let x ∈ Z be odd, i.e., x = 2k + 1 for some k ∈ Z.
- 3. Then $x + x^2 x^3$ is odd! (check this!). Hence proved.

Theorem 5.: There are infinitely many primes. Proof by contradiction:

1. Suppose there are only finitely many primes, say

 $p_1 < p_2 < \ldots < p_r.$

- 1. Suppose there are only finitely many primes, say $p_1 < p_2 < \ldots < p_r$.
- 2. Let $k = (p_1 * p_2 * \ldots * p_r) + 1$.
- 3. Then k when divided by any p_i has remainder 1. So none of the p_i 's divide k.

- 1. Suppose there are only finitely many primes, say $p_1 < p_2 < \ldots < p_r$.
- 2. Let $k = (p_1 * p_2 * \ldots * p_r) + 1$.
- 3. Then k when divided by any p_i has remainder 1. So none of the p_i 's divide k.
- 4. But k > 1 and k is not prime (since $k > p_r$), so k can be written as a product of primes (why?)

- 1. Suppose there are only finitely many primes, say $p_1 < p_2 < \ldots < p_r$.
- 2. Let $k = (p_1 * p_2 * \ldots * p_r) + 1$.
- 3. Then k when divided by any p_i has remainder 1. So none of the p_i 's divide k.
- 4. But k > 1 and k is not prime (since $k > p_r$), so k can be written as a product of primes (why?)
 - Fundamental theorem of arithmetic: any natural number
 > 1 can be written as a (unique) product of primes.

- 1. Suppose there are only finitely many primes, say $p_1 < p_2 < \ldots < p_r$.
- 2. Let $k = (p_1 * p_2 * \ldots * p_r) + 1$.
- 3. Then k when divided by any p_i has remainder 1. So none of the p_i 's divide k.
- 4. But k > 1 and k is not prime (since $k > p_r$), so k can be written as a product of primes (why?)
 - Fundamental theorem of arithmetic: any natural number
 > 1 can be written as a (unique) product of primes.
- 5. Now take any prime p in this product, then, p divides k. So, by 3. above, $p \notin \{p_1, \ldots, p_r\}$.
- 6. This contradicts 1. since we had assumed that $\{p_1, \ldots, p_r\}$ was the set of all primes.

- 1. Suppose there are only finitely many primes, say $p_1 < p_2 < \ldots < p_r$.
- 2. Let $k = (p_1 * p_2 * \ldots * p_r) + 1$.
- 3. Then k when divided by any p_i has remainder 1. So none of the p_i 's divide k.
- 4. But k > 1 and k is not prime (since $k > p_r$), so k can be written as a product of primes (why?)
 - Fundamental theorem of arithmetic: any natural number
 > 1 can be written as a (unique) product of primes.
- 5. Now take any prime p in this product, then, p divides k. So, by 3. above, $p \notin \{p_1, \ldots, p_r\}$.
- 6. This contradicts 1. since we had assumed that $\{p_1, \ldots, p_r\}$ was the set of all primes.

Theorem 6.: There exist irrational numbers x and y such that x^y is rational.

Theorem 6.: There exist irrational numbers x and y such that x^y is rational.

Proof:

• Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.

Theorem 6.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.

• Case 1: If z is rational, we are done (why?)

Theorem 6.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.
- Case 1: If z is rational, we are done (why?)
- Case 2: Else z is irrational.

Theorem 6.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.
- Case 1: If z is rational, we are done (why?)
- Case 2: Else z is irrational.
 - Then consider $z^{\sqrt{2}} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^2 = 2.$

Theorem 6.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.
- Case 1: If z is rational, we are done (why?)
- Case 2: Else z is irrational.
 - Then consider $z^{\sqrt{2}} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^2 = 2.$
 - ► Thus we have found two irrationals $x = z = \sqrt{2}^{\sqrt{2}}, y = \sqrt{2}$ such that $x^y = 2$ is rational.

Theorem 6.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.
- Case 1: If z is rational, we are done (why?)
- Case 2: Else z is irrational.
 - Then consider $z^{\sqrt{2}} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^2 = 2.$
 - ► Thus we have found two irrationals $x = z = \sqrt{2}^{\sqrt{2}}, y = \sqrt{2}$ such that $x^y = 2$ is rational.

Indeed, note that the above proof is not constructive!

Theorem 6.: There exist irrational numbers x and y such that x^y is rational.

Proof:

- Consider $\sqrt{2}$. First show that $\sqrt{2}$ is irrational.
- Let $x = y = \sqrt{2}$ and consider $z = \sqrt{2}^{\sqrt{2}}$.
- Case 1: If z is rational, we are done (why?)
- Case 2: Else z is irrational.
 - Then consider $z^{\sqrt{2}} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^2 = 2.$
 - ▶ Thus we have found two irrationals $x = z = \sqrt{2}^{\sqrt{2}}, y = \sqrt{2}$ such that $x^y = 2$ is rational.

Indeed, note that the above proof is not constructive!

(H.W): Post a constructive proof of this theorem on piazza.

Types of proofs

- 1. $\neg(p \land q)$ is logically equivalent to $\neg p \lor \neg q$
- 2. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$.
- 3. If 6 is prime, then 6² = 30.
 4. x is an even integer iff x + x² x³ is even.
- 5. There are infinitely many prime numbers.
- 6. There exist irrational numbers x, y such that x^y is rational.
- 7. For all $n \in \mathbb{N}$, $n! \leq n^n$.
- 8. There does not exist a (input-free) program which will always determine whether an arbitrary (input-free) program will halt.

Types of proofs

- 1. $\neg (p \land q)$ is logically equivalent to $\neg p \lor \neg q$ - By truth tables
- 2. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$. – Direct proof
- 3. If 6 is prime, then $6^2 = 30$. Vacuous/trivial proof
- 4. x is an even integer iff $x + x^2 x^3$ is even.
 - Both directions, by contrapositive $(A \rightarrow B = \neg B \rightarrow \neg A)$
- 5. There are infinitely many prime numbers.

- Proof by contradiction

- 6. There exist irrational numbers x, y such that x^y is rational. - Non-constructive proof
- 7. For all $n \in \mathbb{N}$, $n! \leq n^n$.
- 8. There does not exist a (input-free) program which will always determine whether an arbitrary (input-free) program will halt.

Types of proofs

- 1. $\neg (p \land q)$ is logically equivalent to $\neg p \lor \neg q$ - By truth tables
- 2. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$. – Direct proof
- 3. If 6 is prime, then $6^2 = 30$. Vacuous/trivial proof
- 4. x is an even integer iff $x + x^2 x^3$ is even.
 - Both directions, by contrapositive $(A \rightarrow B = \neg B \rightarrow \neg A)$
- 5. There are infinitely many prime numbers.

– Proof by contradiction

- 6. There exist irrational numbers x, y such that x^y is rational. - Non-constructive proof
- 7. For all $n \in \mathbb{N}$, $n! \le n^n$. next!
- 8. There does not exist a (input-free) program which will always determine whether an arbitrary (input-free) program will halt.