CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay

Aug 05, 2024

Lecture 04 – Induction

1

Logistics and recap

Course material, references are being posted at

http://www.cse.iitb.ac.in/~akshayss/teaching.html

Logistics and recap

Course material, references are being posted at

- http://www.cse.iitb.ac.in/~akshayss/teaching.html
- Problem Sheet 1 is on Piazza
 - https://piazza.com/iit_bombay/fall2024/cs105

Logistics and recap

Course material, references are being posted at

- http://www.cse.iitb.ac.in/~akshayss/teaching.html
- Problem Sheet 1 is on Piazza
 - https://piazza.com/iit_bombay/fall2024/cs105

Recap of three lectures

- ▶ What are discrete structures?
- ► Course outline
- ▶ Chapter 1: Proofs and structures
 - ▶ Propositions: statements that can be assigned a truth value
 - Predicates: propositions with variables
 - Quantifiers
 - Theorems and different types of proofs

Types of proofs

- 1. $\neg(p \land q)$ is logically equivalent to $\neg p \lor \neg q$
- 2. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$.
- 3. If 6 is prime, then 6² = 30.
 4. x is an even integer iff x + x² x³ is even.
- 5. There are infinitely many prime numbers.
- 6. There exist irrational numbers x, y such that x^y is rational.
- 7. For all $n \in \mathbb{N}$, $n! \leq n^n$.
- 8. There does not exist a (input-free) program which will always determine whether an arbitrary (input-free) program will halt.

Types of proofs

- 1. $\neg (p \land q)$ is logically equivalent to $\neg p \lor \neg q$ - By truth tables
- 2. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$. – Direct proof
- 3. If 6 is prime, then $6^2 = 30$. Vacuous/trivial proof
- 4. x is an even integer iff $x + x^2 x^3$ is even.
 - Both directions, by contrapositive $(A \rightarrow B = \neg B \rightarrow \neg A)$
- 5. There are infinitely many prime numbers.

- Proof by contradiction

- 6. There exist irrational numbers x, y such that x^y is rational. - Non-constructive proof
- 7. For all $n \in \mathbb{N}$, $n! \leq n^n$.
- 8. There does not exist a (input-free) program which will always determine whether an arbitrary (input-free) program will halt.

Types of proofs

- 1. $\neg (p \land q)$ is logically equivalent to $\neg p \lor \neg q$ - By truth tables
- 2. For all $a, b, c \in \mathbb{R}^{\geq 0}$, if $a^2 + b^2 = c^2$, then $a + b \geq c$. – Direct proof
- 3. If 6 is prime, then $6^2 = 30$. Vacuous/trivial proof
- 4. x is an even integer iff $x + x^2 x^3$ is even.
 - Both directions, by contrapositive $(A \rightarrow B = \neg B \rightarrow \neg A)$
- 5. There are infinitely many prime numbers.

– Proof by contradiction

- 6. There exist irrational numbers x, y such that x^y is rational. - Non-constructive proof
- 7. For all $n \in \mathbb{N}$, $n! \le n^n$. next!
- 8. There does not exist a (input-free) program which will always determine whether an arbitrary (input-free) program will halt.

What are the common/significant elements of the proofs?

What are the common/significant elements of the proofs?

▶ Rules of inference: Logic, e.g.,

- if p is true, and p implies q, then q is true.
- if p is true, then $p \lor q$ is true.
- if p is true and q is true, then $p \wedge q$ is true.
- if p implies q and q implies r, then p implies r.
- if $p \lor q$ is true and p is false, then q is true.

What are the common/significant elements of the proofs?

▶ Rules of inference: Logic, e.g.,

• if p is true, and p implies q, then q is true.

• if p is true, then $p \lor q$ is true.

- if p is true and q is true, then $p \wedge q$ is true.
- if p implies q and q implies r, then p implies r.

• if $p \lor q$ is true and p is false, then q is true.

Strategies: vacuous, direct, case-by-case, contrapositive, contradiction, constructive, non-constructive.

What are the common/significant elements of the proofs?

▶ Rules of inference: Logic, e.g.,

• if p is true, and p implies q, then q is true.

• if p is true, then $p \lor q$ is true.

- if p is true and q is true, then $p \wedge q$ is true.
- if p implies q and q implies r, then p implies r.

• if $p \lor q$ is true and p is false, then q is true.

 Strategies: vacuous, direct, case-by-case, contrapositive, contradiction, constructive, non-constructive.

▶ Role of counter-examples: Prove or disprove: For all $x \in \mathbb{N}$, $x^2 + x + 41$ is prime.

What are the common/significant elements of the proofs?

▶ Rules of inference: Logic, e.g.,

• if p is true, and p implies q, then q is true.

• if p is true, then $p \lor q$ is true.

- if p is true and q is true, then $p \wedge q$ is true.
- if p implies q and q implies r, then p implies r.

• if $p \lor q$ is true and p is false, then q is true.

 Strategies: vacuous, direct, case-by-case, contrapositive, contradiction, constructive, non-constructive.

- ▶ Role of counter-examples: Prove or disprove: For all $x \in \mathbb{N}$, $x^2 + x + 41$ is prime.
- Axioms: Peano's axioms, Euclid's axioms.

Axioms

(a) Euclid (b) G. Peano

(c) Zermelo-Fraenkel

- (a) Euclid's axioms for geometry in 300 BCE.
- (b) Peano's axioms for natural numbers in 1889.

Axioms

(a) Euclid (b) G. Peano

(c) Zermelo-Fraenkel

- (a) Euclid's axioms for geometry in 300 BCE.
- (b) Peano's axioms for natural numbers in 1889.
- (c) Zermelo-Fraenkel and Choice axioms (ZFC) are a small set of axioms from which most of mathematics can be inferred.
 - But proving even 2+2=4 requires > 20000 lines of proof!
 - In this course, we will assume axioms, mostly from high school math (distributivity of numbers etc.).

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

 \blacktriangleright P(0) is true (Base case)

▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- \blacktriangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 7.: For all integers n > 1, $n! < n^n$ Proof by induction: we will show for all $n \ge 2$, $n! < n^n$

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- \blacktriangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 7.: For all integers n > 1, $n! < n^n$ Proof by induction: we will show for all $n \ge 2$, $n! < n^n$

1. Base case For $n = 2, 2! = 2 \le 4 = 2^2$, so Base Case is true.

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- \blacktriangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 7.: For all integers n > 1, $n! < n^n$ Proof by induction: we will show for all $n \ge 2$, $n! < n^n$

- 1. Base case For $n = 2, 2! = 2 \le 4 = 2^2$, so Base Case is true.
- 2. Induction Hypothesis: Assume, for some $n = k \ge 2, k! < k^k$

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- \blacktriangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 7.: For all integers n > 1, $n! < n^n$ Proof by induction: we will show for all $n \ge 2$, $n! < n^n$

- 1. Base case For $n = 2, 2! = 2 \le 4 = 2^2$, so Base Case is true.
- 2. Induction Hypothesis: Assume, for some $n = k \ge 2, k! < k^k$
- 3. Induction step: To show: $(k+1)! \le (k+1)^{(k+1)}$

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- \blacktriangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 7.: For all integers n > 1, $n! < n^n$ Proof by induction: we will show for all $n \ge 2$, $n! < n^n$

- 1. Base case For $n = 2, 2! = 2 \le 4 = 2^2$, so Base Case is true.
- 2. Induction Hypothesis: Assume, for some $n = k \ge 2, k! < k^k$
- 3. Induction step: To show: $(k+1)! \leq (k+1)^{(k+1)}$

 $(k+1)! = k! \cdot (k+1) \le k^k (k+1)$ (by Induction Hypothesis)

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- \blacktriangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem 7.: For all integers n > 1, $n! < n^n$ Proof by induction: we will show for all $n \ge 2$, $n! < n^n$

- 1. Base case For $n = 2, 2! = 2 \le 4 = 2^2$, so Base Case is true.
- 2. Induction Hypothesis: Assume, for some $n = k \ge 2, k! < k^k$

3. Induction step: To show: $(k+1)! \leq (k+1)^{(k+1)}$

 $\begin{aligned} (k+1)! &= \textit{k}! \cdot (k+1) \leq \textit{k}^{\textit{k}}(k+1) \text{ (by Induction Hypothesis)} \\ &< (k+1)^{\textit{k}} \cdot (k+1) = (k+1)^{(k+1)} \end{aligned}$

Induction (Axiom)

Let P(n) be a property of non-negative integers. If

- \blacktriangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction Step)

then P(n) is true for all $n \in \mathbb{N}$.

- Theorem 7.: For all integers n > 1, $n! < n^n$ Proof by induction: we will show for all $n \ge 2$, $n! < n^n$
 - 1. Base case For $n = 2, 2! = 2 \le 4 = 2^2$, so Base Case is true.
 - 2. Induction Hypothesis: Assume, for some $n = k \ge 2, k! < k^k$
 - 3. Induction step: To show: $(k+1)! \leq (k+1)^{(k+1)}$

 $\begin{aligned} (k+1)! &= \textit{k}! \cdot (k+1) \leq \textit{k}^{\textit{k}}(k+1) \text{ (by Induction Hypothesis)} \\ &< (k+1)^{\textit{k}} \cdot (k+1) = (k+1)^{(k+1)} \end{aligned}$

4. Hence by induction, we conclude that for all $n \ge 2$, $n! < n^n$.

1. Summations: 1.1 $1+2+\ldots+n = \frac{n(n+1)}{2}$. 1.2 $1^2 - 2^2 + 3^2 - \cdots + (-1)^{n-1}n^2 = (-1)^{n-1}\frac{n(n+1)}{2}$

1. Summations: For every positive integer n, 1.1 $1+2+\ldots+n=\frac{n(n+1)}{2}$. 1.2 $1^2-2^2+3^2-\cdots+(-1)^{n-1}n^2=(-1)^{n-1}\frac{n(n+1)}{2}$

1. Summations: For every positive integer n,

1.1
$$1+2+\ldots+n = \frac{n(n+1)}{2}$$
.
1.2 $1^2-2^2+3^2-\cdots+(-1)^{n-1}n^2 = (-1)^{n-1}\frac{n(n+1)}{2}$

- 2. Inequalities
 - 2.1 If h > -1, then $1 + nh \le (1 + h)^n$ for all non-negative integers n.
- 3. Divisibility
 - 3.1 6 divides $n^3 n$ when n is a non-negative integer. 3.2 21 divides $4^{n+1} + 5^{2n-1}$ whenever n is positive integer.
- 4. Many more... including correctness/optimality of algorithms.

1. Summations: For every positive integer n,

1.1
$$1+2+\ldots+n = \frac{n(n+1)}{2}$$
.
1.2 $1^2-2^2+3^2-\cdots+(-1)^{n-1}n^2 = (-1)^{n-1}\frac{n(n+1)}{2}$

- 2. Inequalities
 - 2.1 If h > -1, then $1 + nh \le (1 + h)^n$ for all non-negative integers n.
- 3. Divisibility
 - 3.1 6 divides $n^3 n$ when n is a non-negative integer. 3.2 21 divides $4^{n+1} + 5^{2n-1}$ whenever n is positive integer.
- 4. Many more... including correctness/optimality of algorithms.
- "Proof technique" rather than a "Solution technique" as it requires a good guess of the answer.

Interesting fallacy in using induction!

Conjecture: All horses have the same colour. "Proof" by induction on number of horses:

- 1. Base Case (n = 1) The case with one horse is trivial.
- 2. Induction Hypothesis Assume for $n = k \ge 1$, i.e., any set of $k(\ge 1)$ horses has same color.
- 3. Induction Step We want to show any set of k + 1 horses have same color. Consider such a set, say $1, \ldots, k + 1$.
 - (A) First, consider horses $1, \ldots, k$. By induction hypothesis, they have same color.
 - (B) Next, consider horses $2, \ldots, k+1$. By induction hypothesis, they have same color.
 - (C) Therefore, 1 has same color as 2 (by A) and 2 has same color as k + 1 (by B), implies all k + 1 have same color.
- 4. Thus, by induction, we conclude that for all $n \ge 1$, any set of *n* horses has the same color.

Where is the bug?