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Lecture 04 – Induction
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Logistics and recap

Course material, references are being posted at

▶ http://www.cse.iitb.ac.in/~akshayss/teaching.html

▶ Problem Sheet 1 is on Piazza
▶ https://piazza.com/iit_bombay/fall2024/cs105

Recap of three lectures

▶ What are discrete structures?

▶ Course outline

▶ Chapter 1: Proofs and structures
▶ Propositions: statements that can be assigned a truth value
▶ Predicates: propositions with variables
▶ Quantifiers
▶ Theorems and different types of proofs
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Types of proofs

1. ¬(p ∧ q) is logically equivalent to ¬p ∨ ¬q

– By truth tables

2. For all a, b, c ∈ R≥0, if a2 + b2 = c2, then a+ b ≥ c.

– Direct proof

3. If 6 is prime, then 62 = 30.

– Vacuous/trivial proof

4. x is an even integer iff x+ x2 − x3 is even.

– Both directions, by contrapositive (A → B = ¬B → ¬A)

5. There are infinitely many prime numbers.

– Proof by contradiction

6. There exist irrational numbers x, y such that xy is rational.

– Non-constructive proof

7. For all n ∈ N, n! ≤ nn.

8. There does not exist a (input-free) program which will
always determine whether an arbitrary (input-free)
program will halt.
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3. If 6 is prime, then 62 = 30. – Vacuous/trivial proof
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Theorems and proofs

What are the common/significant elements of the proofs?

▶ Rules of inference: Logic, e.g.,
▶ if p is true, and p implies q, then q is true.
▶ if p is true, then p ∨ q is true.
▶ if p is true and q is true, then p ∧ q is true.
▶ if p implies q and q implies r, then p implies r.
▶ if p ∨ q is true and p is false, then q is true.

▶ Strategies: vacuous, direct, case-by-case, contrapositive,
contradiction, constructive, non-constructive.
▶ Role of counter-examples: Prove or disprove: For all x ∈ N,

x2 + x+ 41 is prime.

▶ Axioms: Peano’s axioms, Euclid’s axioms.
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Axioms

(a) Euclid (b) G. Peano (c) Zermelo-Fraenkel

(a) Euclid’s axioms for geometry in 300 BCE.

(b) Peano’s axioms for natural numbers in 1889.

(c) Zermelo-Fraenkel and Choice axioms (ZFC) are a small set
of axioms from which most of mathematics can be inferred.

▶ But proving even 2+2=4 requires > 20000 lines of proof!

▶ In this course, we will assume axioms, mostly from high
school math (distributivity of numbers etc.).
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Introducing the world of Mathematical Induction

Induction (Axiom)

Let P (n) be a property of non-negative integers. If

▶ P (0) is true (Base case)

▶ for all k ≥ 0, P (k) =⇒ P (k + 1) (Induction Step)

then P (n) is true for all n ∈ N.

Theorem 7.: For all integers n > 1, n! < nn

Proof by induction: we will show for all n ≥ 2, n! < nn

1. Base case For n = 2, 2! = 2 ≤ 4 = 22, so Base Case is true.

2. Induction Hypothesis: Assume, for some n = k ≥ 2, k! < kk

3. Induction step: To show: (k + 1)! ≤ (k + 1)(k+1)

(k + 1)! = k! · (k + 1) ≤ kk(k + 1) (by Induction Hypothesis)
< (k + 1)k · (k + 1) = (k + 1)(k+1)

4. Hence by induction, we conclude that for all n ≥ 2, n! < nn.
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Examples by induction (H.W)

1. Summations:

1.1 1 + 2 + . . .+ n = n(n+1)
2 .

1.2 12 − 22 + 32 − · · ·+ (−1)n−1n2 = (−1)n−1 n(n+1)
2

7



Examples by induction (H.W)

1. Summations: For every positive integer n,

1.1 1 + 2 + . . .+ n = n(n+1)
2 .

1.2 12 − 22 + 32 − · · ·+ (−1)n−1n2 = (−1)n−1 n(n+1)
2

7



Examples by induction (H.W)

1. Summations: For every positive integer n,

1.1 1 + 2 + . . .+ n = n(n+1)
2 .

1.2 12 − 22 + 32 − · · ·+ (−1)n−1n2 = (−1)n−1 n(n+1)
2

2. Inequalities

2.1 If h > −1, then 1 + nh ≤ (1 + h)n for all non-negative
integers n.

3. Divisibility

3.1 6 divides n3 − n when n is a non-negative integer.
3.2 21 divides 4n+1 + 52n−1 whenever n is positive integer.

4. Many more... including correctness/optimality of
algorithms.
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3.1 6 divides n3 − n when n is a non-negative integer.
3.2 21 divides 4n+1 + 52n−1 whenever n is positive integer.

4. Many more... including correctness/optimality of
algorithms.

– “Proof technique” rather than a “Solution technique” as it
requires a good guess of the answer.
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Interesting fallacy in using induction!

Conjecture: All horses have the same colour.

“Proof” by induction on number of horses:

1. Base Case (n = 1) The case with one horse is trivial.

2. Induction Hypothesis Assume for n = k ≥ 1, i.e., any set of
k(≥ 1) horses has same color.

3. Induction Step We want to show any set of k + 1 horses
have same color. Consider such a set, say 1, . . . , k + 1.

(A) First, consider horses 1, . . . , k. By induction hypothesis,
they have same color.

(B) Next, consider horses 2, . . . , k + 1. By induction hypothesis,
they have same color.

(C) Therefore, 1 has same color as 2 (by A) and 2 has same
color as k + 1 (by B), implies all k + 1 have same color.

4. Thus, by induction, we conclude that for all n ≥ 1, any set
of n horses has the same color.

Where is the bug?
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