CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay

Aug 05, 2024

Lecture 05 – Induction and Well-Ordering Principle

1

Recap

Last week

- ▶ What are discrete structures?
- ► Course outline
- ▶ Chapter 1: Proofs and structures
 - ▶ Propositions: statements that can be assigned a truth value
 - Predicates: propositions with variables
 - Quantifiers
 - ▶ Theorems and different types of proofs

Recap

Last week

- ▶ What are discrete structures?
- ► Course outline
- ▶ Chapter 1: Proofs and structures
 - ▶ Propositions: statements that can be assigned a truth value
 - Predicates: propositions with variables
 - Quantifiers
 - ▶ Theorems and different types of proofs

This week Induction

Interesting fallacy in using induction!

Conjecture: All horses have the same colour. "Proof" by induction on number of horses:

- 1. Base Case (n = 1) The case with one horse is trivial.
- 2. Induction Hypothesis Assume for $n = k \ge 1$, i.e., any set of $k(\ge 1)$ horses has same color.
- 3. Induction Step We want to show any set of k + 1 horses have same color. Consider such a set, say $1, \ldots, k + 1$.
 - (A) First, consider horses $1, \ldots, k$. By induction hypothesis, they have same color.
 - (B) Next, consider horses $2, \ldots, k+1$. By induction hypothesis, they have same color.
 - (C) Therefore, 1 has same color as 2 (by A) and 2 has same color as k + 1 (by B), implies all k + 1 have same color.
- 4. Thus, by induction, we conclude that for all $n \ge 1$, any set of *n* horses has the same color.

Where is the bug?

Consider the following algorithm:

input: non-zero real number a, non-negative integer n. **procedure:** if n = 0, then return f(a, n) = 1;

else
$$f(a, n) = a \cdot f(a, n-1);$$

Consider the following algorithm:

input: non-zero real number a, non-negative integer n. **procedure:** if n = 0, then return f(a, n) = 1; else $f(a, n) = a \cdot f(a, n - 1)$;

Theorem: Prove that the algorithm computes the function $f(a, n) = a^n$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.

Consider the following algorithm:

input: non-zero real number a, non-negative integer n. **procedure:** if n = 0, then return f(a, n) = 1; else $f(a, n) = a \cdot f(a, n - 1)$;

Theorem: Prove that the algorithm computes the function $f(a, n) = a^n$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$. Proof by induction:

▶ Base case: if n = 0, $f(a, 0) = 1 = a^0$ for all non-zero real a.

Consider the following algorithm:

input: non-zero real number a, non-negative integer n. **procedure:** if n = 0, then return f(a, n) = 1; else $f(a, n) = a \cdot f(a, n - 1)$;

Theorem: Prove that the algorithm computes the function $f(a, n) = a^n$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$. Proof by induction:

▶ Base case: if n = 0, $f(a, 0) = 1 = a^0$ for all non-zero real a.

▶ Induction step: Assume that for n = k, it is true, i.e., $f(a, k) = a^k$.

Consider the following algorithm:

input: non-zero real number a, non-negative integer n. **procedure:** if n = 0, then return f(a, n) = 1; else $f(a, n) = a \cdot f(a, n - 1)$;

Theorem: Prove that the algorithm computes the function $f(a, n) = a^n$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.

Proof by induction:

▶ Base case: if n = 0, $f(a, 0) = 1 = a^0$ for all non-zero real a.

• Induction step: Assume that for n = k, it is true, i.e., $f(a, k) = a^k$.

Now for n = k + 1, $f(a, k + 1) = a \cdot f(a, k) = a \cdot a^k = a^{k+1}$ (by Induction Hyp).

Consider the following algorithm:

input: non-zero real number a, non-negative integer n. **procedure:** if n = 0, then return f(a, n) = 1; else $f(a, n) = a \cdot f(a, n - 1)$;

Theorem: Prove that the algorithm computes the function $f(a, n) = a^n$ for all non-negative integers $n, a \in \mathbb{R}^{\neq 0}$.

Proof by induction:

▶ Base case: if n = 0, $f(a, 0) = 1 = a^0$ for all non-zero real a.

• Induction step: Assume that for n = k, it is true, i.e., $f(a, k) = a^k$.

- Now for n = k + 1, $f(a, k + 1) = a \cdot f(a, k) = a \cdot a^k = a^{k+1}$ (by Induction Hyp).
- ▶ Thus, by induction for all non-negative integers n, the algorithm above computes $f(a, n) = a^n$.

Axiom: Induction

Let P(n) be a property of non-negative integers. If

 \blacktriangleright P(0) is true (Base case)

▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction step)

then P(n) is true for all $n \in \mathbb{N}$.

Axiom: Induction

Let P(n) be a property of non-negative integers. If

- \blacktriangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem: Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element.

Axiom: Induction

Let P(n) be a property of non-negative integers. If

 \blacktriangleright P(0) is true (Base case)

• for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem: Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element. Does this seem familiar? Obvious? What about for rationals?!

Axiom: Induction

Let P(n) be a property of non-negative integers. If

 \blacktriangleright P(0) is true (Base case)

▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem: Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element.

Prove it using Induction! (H.W)

Axiom: Induction

Let P(n) be a property of non-negative integers. If

 \blacktriangleright P(0) is true (Base case)

▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction step)

then P(n) is true for all $n \in \mathbb{N}$.

Theorem: Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element.

Prove it using Induction! (H.W)

What about it's converse?

Theorem: Well-ordering principle implies Induction

- 1. Suppose Induction is not true. This means that,
 - 1.1 Base Case holds: P(0) is true;
 - 1.2 Induction Step holds: for $\forall n \ge 0, P(n) \implies P(n+1);$
 - 1.3 But the conclusion doesn't hold, i.e., it isn't the case that (P(n) is true for all non-negative integers).

- 1. Suppose Induction is not true. This means that,
 - 1.1 Base Case holds: P(0) is true;
 - 1.2 Induction Step holds: for $\forall n \ge 0, P(n) \implies P(n+1);$
 - 1.3 But the conclusion doesn't hold, i.e., it isn't the case that (P(n) is true for all non-negative integers).
- 2. Point (1.3) implies there exists $n \in \mathbb{N}$ s.t., P(n) is false.

- 1. Suppose Induction is not true. This means that,
 - 1.1 Base Case holds: P(0) is true;
 - 1.2 Induction Step holds: for $\forall n \ge 0, P(n) \implies P(n+1);$
 - 1.3 But the conclusion doesn't hold, i.e., it isn't the case that (P(n) is true for all non-negative integers).
- 2. Point (1.3) implies there exists $n \in \mathbb{N}$ s.t., P(n) is false.
- 3. Now, consider set $S = \{i \in \mathbb{N} \mid P(i) \text{ is false } \}.$

- 1. Suppose Induction is not true. This means that,
 - 1.1 Base Case holds: P(0) is true;
 - 1.2 Induction Step holds: for $\forall n \ge 0, P(n) \implies P(n+1);$
 - 1.3 But the conclusion doesn't hold, i.e., it isn't the case that (P(n) is true for all non-negative integers).
- 2. Point (1.3) implies there exists $n \in \mathbb{N}$ s.t., P(n) is false.
- 3. Now, consider set $S = \{i \in \mathbb{N} \mid P(i) \text{ is false } \}.$
- 4. S is a non-empty (due to 2.) set of non-negative integers, hence by WOP, it has a smallest element, say $i_0 \in S$.

- 1. Suppose Induction is not true. This means that,
 - 1.1 Base Case holds: P(0) is true;
 - 1.2 Induction Step holds: for $\forall n \ge 0, P(n) \implies P(n+1);$
 - 1.3 But the conclusion doesn't hold, i.e., it isn't the case that (P(n) is true for all non-negative integers).
- 2. Point (1.3) implies there exists $n \in \mathbb{N}$ s.t., P(n) is false.
- 3. Now, consider set $S = \{i \in \mathbb{N} \mid P(i) \text{ is false } \}.$
- 4. S is a non-empty (due to 2.) set of non-negative integers, hence by WOP, it has a smallest element, say $i_0 \in S$.
- 5. $i_0 \neq 0$ (due to 1.1) and $i_0 1 \notin S$ (since i_0 is smallest in S).
- 6. $i_0 1 \notin S$ implies $P(i_0 1)$ is true (by definition of S).
- 7. By (1.2), $P(i_0)$ must be true, $i_0 \notin S$.Contradiction!

The Well Ordering Principle and Induction

Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element.

Induction

Let P(n) be a property of non-negative integers. If

- \blacktriangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction step) then P(n) is true for all $n \in \mathbb{N}$.

Theorem: Well-ordering principle iff Induction

The Well Ordering Principle and Induction

Well Ordering Principle

Every nonempty set of non-negative integers has a smallest element.

Induction

Let P(n) be a property of non-negative integers. If

- \blacktriangleright P(0) is true (Base case)
- ▶ for all $k \ge 0$, $P(k) \implies P(k+1)$ (Induction step) then P(n) is true for all $n \in \mathbb{N}$.

Theorem: Well-ordering principle iff Induction

So, we could have chosen either one of them as our basic axiom!

- Proving one part of the fundamental theorem of arithmetic.

- Proving one part of the fundamental theorem of arithmetic. Theorem: Any integer > 1 can be written as a product of (one or more) primes.

- Proving one part of the fundamental theorem of arithmetic. Theorem: Any integer > 1 can be written as a product of (one or more) primes.

Proof by contradiction using WOP!:

▶ Let S be the set of all integers greater than 1 that cannot be written as a product of (one or more) primes.

- Proving one part of the fundamental theorem of arithmetic. Theorem: Any integer > 1 can be written as a product of (one or more) primes.

Proof by contradiction using WOP!:

- ▶ Let S be the set of all integers greater than 1 that cannot be written as a product of (one or more) primes.
- If S is non-empty, there is a least element in it by WOP.

- Proving one part of the fundamental theorem of arithmetic. Theorem: Any integer > 1 can be written as a product of (one or more) primes.

Proof by contradiction using WOP!:

- ▶ Let S be the set of all integers greater than 1 that cannot be written as a product of (one or more) primes.
- ▶ If S is non-empty, there is a least element in it by WOP.
- ▶ Call this least number n. First, n can't be a prime (why?).

▶ So
$$n = a \cdot b$$
, where $n > a, b > 1$.

- Proving one part of the fundamental theorem of arithmetic. Theorem: Any integer > 1 can be written as a product of (one or more) primes.

Proof by contradiction using WOP!:

- ▶ Let S be the set of all integers greater than 1 that cannot be written as a product of (one or more) primes.
- If S is non-empty, there is a least element in it by WOP.
- ▶ Call this least number n. First, n can't be a prime (why?).

• So
$$n = a \cdot b$$
, where $n > a, b > 1$.

- Since a and b are smaller than the smallest number in S, they can be written as product of one or more primes.
- Let $a = p_1 \dots p_k$ and $b = q_1 \dots q_l$ for $k, l \ge 1$. But then $n = p_1 \dots p_k \cdot q_1 \dots q_l$, which is a contradiction.

- Proving one part of the fundamental theorem of arithmetic. Theorem: Any integer > 1 can be written as a product of (one or more) primes.

Proof by contradiction using WOP!:

- ▶ Let S be the set of all integers greater than 1 that cannot be written as a product of (one or more) primes.
- ▶ If S is non-empty, there is a least element in it by WOP.
- ▶ Call this least number n. First, n can't be a prime (why?).

• So
$$n = a \cdot b$$
, where $n > a, b > 1$.

- Since a and b are smaller than the smallest number in S, they can be written as product of one or more primes.
- Let $a = p_1 \dots p_k$ and $b = q_1 \dots q_l$ for $k, l \ge 1$. But then $n = p_1 \dots p_k \cdot q_1 \dots q_l$, which is a contradiction.

Qn: How do you show uniqueness? (H.W.)