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Recap
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▶ What are discrete structures?
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▶ Chapter 1: Proofs and structures
▶ Propositions: statements that can be assigned a truth value
▶ Predicates: propositions with variables
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▶ Theorems and different types of proofs
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Interesting fallacy in using induction!

Conjecture: All horses have the same colour.

“Proof” by induction on number of horses:

1. Base Case (n = 1) The case with one horse is trivial.

2. Induction Hypothesis Assume for n = k ≥ 1, i.e., any set of
k(≥ 1) horses has same color.

3. Induction Step We want to show any set of k + 1 horses
have same color. Consider such a set, say 1, . . . , k + 1.

(A) First, consider horses 1, . . . , k. By induction hypothesis,
they have same color.

(B) Next, consider horses 2, . . . , k + 1. By induction hypothesis,
they have same color.

(C) Therefore, 1 has same color as 2 (by A) and 2 has same
color as k + 1 (by B), implies all k + 1 have same color.

4. Thus, by induction, we conclude that for all n ≥ 1, any set
of n horses has the same color.

Where is the bug?
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Proof of algorithm using induction

Consider the following algorithm:

input: non-zero real number a, non-negative integer n.

procedure: if n = 0, then return f(a, n) = 1;

else f(a, n) = a · f(a, n− 1);

Theorem: Prove that the algorithm computes the function
f(a, n) = an for all non-negative integers n, a ∈ R̸=0.

Proof by induction:

▶ Base case: if n = 0, f(a, 0) = 1 = a0 for all non-zero real a.

▶ Induction step: Assume that for n = k, it is true, i.e.,
f(a, k) = ak.

▶ Now for n = k + 1, f(a, k + 1) = a · f(a, k) = a · ak = ak+1

(by Induction Hyp).

▶ Thus, by induction for all non-negative integers n, the
algorithm above computes f(a, n) = an.
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What is the basis for induction

Axiom: Induction
Let P (n) be a property of non-negative integers. If

▶ P (0) is true (Base case)

▶ for all k ≥ 0, P (k) =⇒ P (k + 1) (Induction step)

then P (n) is true for all n ∈ N.
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What is the basis for induction

Axiom: Induction
Let P (n) be a property of non-negative integers. If

▶ P (0) is true (Base case)

▶ for all k ≥ 0, P (k) =⇒ P (k + 1) (Induction step)

then P (n) is true for all n ∈ N.

Theorem: Well Ordering Principle

Every nonempty set of non-negative integers has a smallest
element.

Prove it using Induction! (H.W)

What about it’s converse?
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WOP implies induction

Theorem: Well-ordering principle implies Induction

Proof by contradiction:

1. Suppose Induction is not true. This means that,

1.1 Base Case holds: P (0) is true;
1.2 Induction Step holds: for ∀n ≥ 0, P (n) =⇒ P (n+ 1);
1.3 But the conclusion doesn’t hold, i.e., it isn’t the case that

(P (n) is true for all non-negative integers).

2. Point (1.3) implies there exists n ∈ N s.t., P (n) is false.

3. Now, consider set S = {i ∈ N | P (i) is false }.
4. S is a non-empty (due to 2.) set of non-negative integers,

hence by WOP, it has a smallest element, say i0 ∈ S.

5. i0 ̸= 0 (due to 1.1) and i0 − 1 ̸∈ S (since i0 is smallest in S).

6. i0 − 1 ̸∈ S implies P (i0 − 1) is true (by definition of S).

7. By (1.2), P (i0) must be true, i0 ̸∈ S.Contradiction!
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The Well Ordering Principle and Induction

Well Ordering Principle

Every nonempty set of non-negative integers has a smallest
element.

Induction
Let P (n) be a property of non-negative integers. If

▶ P (0) is true (Base case)

▶ for all k ≥ 0, P (k) =⇒ P (k + 1) (Induction step)
then P (n) is true for all n ∈ N.

Theorem: Well-ordering principle iff Induction

So, we could have chosen either one of them as our basic axiom!

7



The Well Ordering Principle and Induction

Well Ordering Principle

Every nonempty set of non-negative integers has a smallest
element.

Induction
Let P (n) be a property of non-negative integers. If

▶ P (0) is true (Base case)

▶ for all k ≥ 0, P (k) =⇒ P (k + 1) (Induction step)
then P (n) is true for all n ∈ N.

Theorem: Well-ordering principle iff Induction

So, we could have chosen either one of them as our basic axiom!

7



Direct application of WOP to prove theorems

– Proving one part of the fundamental theorem of arithmetic.
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they can be written as product of one or more primes.

▶ Let a = p1 . . . pk and b = q1 · · · ql for k, l ≥ 1. But then
n = p1 · · · pk · q1 · · · ql, which is a contradiction.

Qn: How do you show uniqueness? (H.W.)
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