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Recap

Last week

▶ What are discrete structures?

▶ Course outline

▶ Chapter 1: Proofs and structures
▶ Propositions: statements that can be assigned a truth value
▶ Predicates: propositions with variables
▶ Quantifiers
▶ Theorems and different types of proofs

This week

▶ Induction

▶ Well-ordering principle

▶ Today: Strong Induction
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Application of WOP to prove theorems (Last class)

– Proving one part of the fundamental theorem of arithmetic.
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Application of WOP to prove theorems (Last class)

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of
(one or more) primes

Proof by contradiction using WOP!:

▶ Let S be the set of all integers greater than 1 that cannot
be written as a product of (one or more) primes.

▶ If S is non-empty, there is a least element in it by WOP.

▶ Call this least number n. First, n can’t be a prime (why?).

▶ So n = a · b, where n > a, b > 1.

▶ Since a and b are smaller than the smallest number in S,
they can be written as a product of (one or more) primes.

▶ Let a = p1 . . . pk and b = q1 · · · ql, for k, l ≥ 1. But then
n = p1 · · · pk · q1 · · · ql, which is a contradiction.

Qn: How do you show uniqueness?
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Fundamental theorem of arithmetic (Uniqueness)
Any integer > 1 can be written as a unique product of one or more primes
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How do we show uniqueness? Proof by contradiction!

1. Let S ̸= ∅ be the set integers > 1 that can be written has
product of one or more primes in two ways.

2. By WOP, let s be the smallest integer in S.

3. Then s = p1, . . . pm = q1 . . . qn where each pi is distinct
from each qj . (else, if dividing by pi would give a smaller
elt in S)
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3. Then s = p1, . . . pm = q1 . . . qn where each pi is distinct
from each qj .

4. Without loss of generality, assume p1 < q1.
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7. But by 2., p1 must have a unique prime factorization, so it
must occur in factorization of Q or (q1 − p1).
▶ If p1 occurs in factorization of Q, then p1 = qj so violates 3.
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7. But by 2., p1 must have a unique prime factorization, so it

must occur in factorization of Q or (q1 − p1).
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▶ If p1 occurs in factorization of q1 − p1 then p1 must divide

q1 − p1 and hence also q1, which is impossible since p1, q1
are primes.
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Direct proof by induction

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of
one or more primes

Proof by induction:
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▶ If k + 1 is a prime, then done. Else k + 1 = p · q, p, q > 1.

▶ But now it may be that p, q ̸= k, so we can’t use induction
hypothesis.
▶ For example, if k + 1 = 21, then 21 = 7 · 3, but k = 20, we

need P (7), P (3) to hold!
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– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of
one or more primes

Proof by induction:
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▶ If k + 1 is a prime, then done. Else k + 1 = p · q, p, q > 1.

▶ But now it may be that p, q ̸= k, so we can’t use induction
hypothesis.
▶ For example, if k + 1 = 21, then 21 = 7 · 3, but k = 20, we

need P (7), P (3) to hold!

▶ Let us strengthen our induction hypothesis. That is...

5



Direct proof by induction

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of
one or more primes

Proof by induction:

▶ Base case: n = 2, done.

▶ Assume strong induction hypothesis, i.e., for all 1 ≤ r ≤ k,
k = p1 · · · pm.
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Direct proof by induction

– Proving one part of the fundamental theorem of arithmetic.

Theorem: Any integer > 1 can be written as a product of
one or more primes

Proof by induction:

▶ Base case: n = 2, done.

▶ Assume strong induction hypothesis, i.e., for all 1 ≤ r ≤ k,
k = p1 · · · pm.

▶ Consider n = k + 1.

▶ If k + 1 is a prime, then done. Else k + 1 = p · q, p, q > 1.

▶ By the stronger hypothesis, we can write p = p1 . . . pk and
q = q1 · · · ql.

▶ Therefore k + 1 = p1 · · · pk · q1 · · · qk.
▶ Thus, the statement holds for all n > 1.

5



Strong Induction

Strong Induction

Let P (n) be a property of non-negative integers. If

▶ P (0) is true (Base case)

▶ for all k ≥ 0, (P (0) ∧ P (1) ∧ · · · ∧ P (k)) =⇒ P (k + 1)
then P (n) is true for all n ∈ N. (Induction Step)

Induction
Let P (n) be a property of non-negative integers. If

▶ P (0) is true (Base case)

▶ for all k ≥ 0, P (k) =⇒ P (k + 1) (Induction step)

then P (n) is true for all n ∈ N.

Theorem: Strong Induction iff Induction iff WOP
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Induction examples

An odd number of students stand at mutually distinct
distances. At the same time, each student throws a paper
rocket at their nearest neighbour, hitting this person. Use
mathematical induction, to show that there is at least one
survivor, i.e., at least one student who is not hit by a rocket!

How to show this? What is P(n)?

▶ P (n) be the statement that there is a survivor whenever
2n+1 students stand at distinct mutual distances and each
student throws a rocket at their nearest neighbour. Show
that P (n) is true for all positive integers n.

▶ Base case: n=1.

▶ Assume for groups of 2k + 1 students. Now consider a
group of 2k + 3 students.

▶ Consider the closest pair A-B and divide into two cases
based on whether someone threw rocket at them.
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Another exercise by Strong Induction

Quotient-Remainder Theorem

For any m,n ∈ N, m ̸= 0, there exists a unique quotient q and
remainder r (q, r ∈ N), such that

n = q ·m+ r, 0 ≤ r < m

1. Fix any m > 0, we use strong induction on n.

2. Base cases: n ∈ {0, . . . ,m− 1}. What should q and r be?
3. Induction step: We prove for all k ≥ m,

3.1 (ind hyp): if ∀n ∈ N, n ≤ k, ∃q, r s.t. n = qm+ r,0 ≤ r < m.
3.2 (to prove): ∃q∗, r∗ s.t., k + 1 = q∗m+ r∗ for 0 ≤ r∗ < m.

4. Take k′ = (k + 1)−m = k − (m− 1)≤ k. i.e., k′ ≤ k, so we
can apply ind hyp on k′.

5. By Ind Hyp, k′ = q′m+ r′ for some q′, 0 ≤ r′ < m.

6. Now to prove 3.2, we choose q∗ = q′ + 1, r∗ = r′

7. Then, q∗m+ r∗ = (q′ +1)m+ r′ = q′m+ r′ +m = k′ +m =
((k + 1)−m) +m = k + 1.

Qns: Show uniqueness (H.W). Also, what if m,n ∈ Z,m ̸= 0?
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