
CS 105: Department Introductory Course
on Discrete Structures

Instructor : S. Akshay

Aug 12, 2024

Lecture 07 – Basic structures: sets
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Recap of last 6 lectures

Week 01

▶ What are discrete structures?

▶ Chapter 1: Proofs and mathematical reasoning
▶ Propositions: statements that can be assigned a truth value
▶ Predicates and Quantifiers
▶ Theorems and types of proofs: contradiction, contrapositive

Week 02

▶ Induction

▶ Well-ordering principle

▶ Strong Induction

Two problem-sheets released on Piazza

1. Questions on Basic proofs, reasoning

2. Questions on Induction, WOP, Strong Induction.
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Logistics

Optional Problem Solving Sessions started...

▶ Second to be scheduled soon...

Safe and Attendance

▶ Any remaining issues: Private message on Piazza to
Instructors with proof (screenshots etc).

▶ Attendance ̸= Presence!
Pop Quiz Anytime!

Quiz 1: End of August, tentatively Aug 28th, 8.30am

3



Logistics

Optional Problem Solving Sessions started...

▶ Second to be scheduled soon...

Safe and Attendance

▶ Any remaining issues: Private message on Piazza to
Instructors with proof (screenshots etc).

▶ Attendance ̸= Presence!
Pop Quiz Anytime!

Quiz 1: End of August, tentatively Aug 28th, 8.30am

3



Logistics

Optional Problem Solving Sessions started...

▶ Second to be scheduled soon...

Safe and Attendance

▶ Any remaining issues: Private message on Piazza to
Instructors with proof (screenshots etc).

▶ Attendance ̸= Presence!

Pop Quiz Anytime!

Quiz 1: End of August, tentatively Aug 28th, 8.30am

3



Logistics

Optional Problem Solving Sessions started...

▶ Second to be scheduled soon...

Safe and Attendance

▶ Any remaining issues: Private message on Piazza to
Instructors with proof (screenshots etc).

▶ Attendance ̸= Presence!
Pop Quiz Anytime!

Quiz 1: End of August, tentatively Aug 28th, 8.30am

3



Logistics

Optional Problem Solving Sessions started...

▶ Second to be scheduled soon...

Safe and Attendance

▶ Any remaining issues: Private message on Piazza to
Instructors with proof (screenshots etc).

▶ Attendance ̸= Presence!
Pop Quiz Anytime!

Quiz 1: End of August, tentatively Aug 28th, 8.30am

3



Formal Writing

4



Formal Writing

Qn: Prove that ∀n ∈ N, n ≥ 1, 1 + 2 + . . .+ n = n(n+1)
2

4



Formal Writing

Qn: Prove that ∀n ∈ N, n ≥ 1, 1 + 2 + . . .+ n = n(n+1)
2

Proof by Induction

4



Formal Writing

Qn: Prove that ∀n ∈ N, n ≥ 1, 1 + 2 + . . .+ n = n(n+1)
2

Proof by Induction

1. Base case n = 1, lhs=1=1·2
2 =rhs. Hence holds.

4



Formal Writing

Qn: Prove that ∀n ∈ N, n ≥ 1, 1 + 2 + . . .+ n = n(n+1)
2

Proof by Induction

1. Base case n = 1, lhs=1=1·2
2 =rhs. Hence holds.

2. Ind Hyp: Assume statement for some k (or for all numbers

from 1 . . . k): 1 + 2 + . . .+ k = k(k+1)
2

4



Formal Writing

Qn: Prove that ∀n ∈ N, n ≥ 1, 1 + 2 + . . .+ n = n(n+1)
2

Proof by Induction

1. Base case n = 1, lhs=1=1·2
2 =rhs. Hence holds.

2. Ind Hyp: Assume statement for some k (or for all numbers

from 1 . . . k): 1 + 2 + . . .+ k = k(k+1)
2

3. Ind Step: at k + 1, we need to show
1 + 2 + . . .+ (k + 1) = (k+1)(k+2)

2

4



Formal Writing

Qn: Prove that ∀n ∈ N, n ≥ 1, 1 + 2 + . . .+ n = n(n+1)
2

Proof by Induction

1. Base case n = 1, lhs=1=1·2
2 =rhs. Hence holds.

2. Ind Hyp: Assume statement for some k (or for all numbers

from 1 . . . k): 1 + 2 + . . .+ k = k(k+1)
2

3. Ind Step: at k + 1, we need to show
1 + 2 + . . .+ (k + 1) = (k+1)(k+2)

2
lhs= 1 + 2 + . . .+ k + (k + 1) = (1 + 2 + . . . k) + (k + 1)

= k(k+1)
2 + (k + 1) (By Induction Hypothesis)

= k(k+1)+2(k+1)
2 = (k+2)(k+1)

2 = rhs.

4



Formal Writing

Qn: Prove that ∀n ∈ N, n ≥ 1, 1 + 2 + . . .+ n = n(n+1)
2

Proof by Induction

1. Base case n = 1, lhs=1=1·2
2 =rhs. Hence holds.

2. Ind Hyp: Assume statement for some k (or for all numbers

from 1 . . . k): 1 + 2 + . . .+ k = k(k+1)
2

3. Ind Step: at k + 1, we need to show
1 + 2 + . . .+ (k + 1) = (k+1)(k+2)

2
lhs= 1 + 2 + . . .+ k + (k + 1) = (1 + 2 + . . . k) + (k + 1)

= k(k+1)
2 + (k + 1) (By Induction Hypothesis)

= k(k+1)+2(k+1)
2 = (k+2)(k+1)

2 = rhs.

4. Hence by induction we can conclude for all n ∈ N, n ≥ 1.
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From proofs to structures

Next: Chapter 2: Basic Discrete Structures

▶ Finite and Infinite Sets,

▶ Functions

▶ Relations
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Sets

Figure: Georg Cantor (1845-1918); extract
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▶ A set is an unordered collection of objects.
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Sets

Figure: Georg Cantor (1845-1918); extract

What is a set?

▶ A set is an unordered collection of objects.

▶ The objects in a set are called its elements.

More formally,

Let P be a property. Any collection of objects that are defined
by (or satisfy) P is a set, i.e., S = {x | P (x)}.
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Some simple boring stuff about sets

Examples and properties

▶ We have already seen examples: Z,N,R, set of all horses,...
▶ Let A,B be two sets. Recall the usual definitions:

▶ Equality A = B, Subset A ⊆ B,

▶ Cartesian product A×B = {(a, b) | a ∈ A, b ∈ B}
▶ Union A ∪B = {x | a ∈ A or b ∈ B}
▶ Intersection A ∩B = {x | a ∈ A and b ∈ B}
▶ Empty set ϕ,
▶ Power set of A = P(A)= set of all subsets of A.
▶ If U is the universe, then the complement of A,

Ā = Ac = {x ∈ U | x ̸∈ A}.
So, what is the difference between {∅} and ∅?

7



Some simple boring stuff about sets

Examples and properties

▶ We have already seen examples: Z,N,R, set of all horses,...
▶ Let A,B be two sets. Recall the usual definitions:

▶ Equality A = B, Subset A ⊆ B,
▶ Cartesian product A×B = {(a, b) | a ∈ A, b ∈ B}

▶ Union A ∪B = {x | a ∈ A or b ∈ B}
▶ Intersection A ∩B = {x | a ∈ A and b ∈ B}
▶ Empty set ϕ,
▶ Power set of A = P(A)= set of all subsets of A.
▶ If U is the universe, then the complement of A,
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Not so simple...

A barber is a man in town who only shaves those who don’t
shave themselves.
Barber’s paradox: Does the barber shave himself?
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Russell’s paradox

Let S = {X | X ̸∈ X}
Then if S ∈ S, then S ̸∈ S and if S ̸∈ S, then S ∈ S!

How do you resolve this?

Figure: Bertrand Russell (1872-1970)
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Why does this definition get rid of Russell’s paradox?
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Axiomatic approach to set theory (ZFC!)
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Let P (x) = x ̸∈ x. let A be a set and S = {x ∈ A | x ̸∈ x}.
▶
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Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a
property P , S = {x ∈ A | P (x)} is a set.

Let P (x) = x ̸∈ x. let A be a set and S = {x ∈ A | x ̸∈ x}.
▶ if (S ∈ S): from the definition of S, S ∈ A and S ̸∈ S,

which is a contradiction.

▶ if (S ̸∈ S): from the definition, either S ̸∈ A or S ∈ S. But
we have assumed that S ̸∈ S. Hence, S ̸∈ A. No
contradiction!
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Is the fun done? How do we compare sets?

▶ For two finite sets, this is easy, just count the number of
elements and compare them!

▶ But what about two infinite sets?

▶ Example: {set of all even natural numbers} vs N vs Q vs R
▶ Turns out we need functions... but first...
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Hilbert’s hotel

▶ Suppose there is a hotel with infinitely many rooms.

▶ And suppose they are all full (like in IIT guest house).

1. Can you accomodate 1 or finitely many more guests, by
shifting around the existing guests?

2. What if infinitely many more guests arrive?

3. What if infinitely many more trains with infinitely many
more guests arrive? (H.W)
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