CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay

Aug 12, 2024

Lecture 07 – Basic structures: sets

1

Recap of last 6 lectures

Week 01

- ▶ What are discrete structures?
- ▶ Chapter 1: Proofs and mathematical reasoning
 - ▶ Propositions: statements that can be assigned a truth value
 - Predicates and Quantifiers
 - ▶ Theorems and types of proofs: contradiction, contrapositive

Recap of last 6 lectures

Week 01

- ▶ What are discrete structures?
- ▶ Chapter 1: Proofs and mathematical reasoning
 - ▶ Propositions: statements that can be assigned a truth value
 - Predicates and Quantifiers
 - ▶ Theorems and types of proofs: contradiction, contrapositive

Week 02

- Induction
- ▶ Well-ordering principle
- Strong Induction

Recap of last 6 lectures

Week 01

- ▶ What are discrete structures?
- ▶ Chapter 1: Proofs and mathematical reasoning
 - ▶ Propositions: statements that can be assigned a truth value
 - Predicates and Quantifiers
 - ▶ Theorems and types of proofs: contradiction, contrapositive

Week 02

- Induction
- ▶ Well-ordering principle
- Strong Induction

Two problem-sheets released on Piazza

- 1. Questions on Basic proofs, reasoning
- 2. Questions on Induction, WOP, Strong Induction.

Optional Problem Solving Sessions started...

▶ Second to be scheduled soon...

Optional Problem Solving Sessions started...

▶ Second to be scheduled soon...

Safe and Attendance

 Any remaining issues: Private message on Piazza to Instructors with proof (screenshots etc).

Optional Problem Solving Sessions started...

▶ Second to be scheduled soon...

Safe and Attendance

- Any remaining issues: Private message on Piazza to Instructors with proof (screenshots etc).
- ▶ Attendance \neq Presence!

Optional Problem Solving Sessions started...

▶ Second to be scheduled soon...

Safe and Attendance

- Any remaining issues: Private message on Piazza to Instructors with proof (screenshots etc).
- ▶ Attendance \neq Presence!

Pop Quiz Anytime!

Optional Problem Solving Sessions started...

▶ Second to be scheduled soon...

Safe and Attendance

- Any remaining issues: Private message on Piazza to Instructors with proof (screenshots etc).
- ▶ Attendance \neq Presence!

Pop Quiz Anytime!

Quiz 1: End of August, tentatively Aug 28th, 8.30am

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1+2+\ldots+n = \frac{n(n+1)}{2}$

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1+2+\ldots+n = \frac{n(n+1)}{2}$ Proof by Induction

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by Induction

1. Base case n = 1, $lhs=1=\frac{1\cdot 2}{2}=rhs$. Hence holds.

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by Induction

- 1. Base case n = 1, lhs= $1 = \frac{1 \cdot 2}{2}$ =rhs. Hence holds.
- 2. Ind Hyp: Assume statement for some k (or for all numbers from $1 \dots k$): $1 + 2 + \dots + k = \frac{k(k+1)}{2}$

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1+2+\ldots+n = \frac{n(n+1)}{2}$ Proof by Induction

- 1. Base case n = 1, lhs= $1 = \frac{1 \cdot 2}{2}$ =rhs. Hence holds.
- 2. Ind Hyp: Assume statement for some k (or for all numbers from $1 \dots k$): $1 + 2 + \dots + k = \frac{k(k+1)}{2}$
- 3. Ind Step: at k + 1, we need to show $1 + 2 + \ldots + (k + 1) = \frac{(k+1)(k+2)}{2}$

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by Induction

- 1. Base case n = 1, lhs= $1 = \frac{1 \cdot 2}{2}$ =rhs. Hence holds.
- 2. Ind Hyp: Assume statement for some k (or for all numbers from $1 \dots k$): $1 + 2 + \dots + k = \frac{k(k+1)}{2}$

3. Ind Step: at
$$k + 1$$
, we need to show
 $1 + 2 + \ldots + (k + 1) = \frac{(k+1)(k+2)}{2}$
 $\text{lhs} = 1 + 2 + \ldots + k + (k + 1) = (1 + 2 + \ldots k) + (k + 1)$
 $= \frac{k(k+1)}{2} + (k + 1) \text{ (By Induction Hypothesis)}$
 $= \frac{k(k+1)+2(k+1)}{2} = \frac{(k+2)(k+1)}{2} = rhs.$

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by Induction

- 1. Base case n = 1, lhs= $1 = \frac{1 \cdot 2}{2}$ =rhs. Hence holds.
- 2. Ind Hyp: Assume statement for some k (or for all numbers from $1 \dots k$): $1 + 2 + \dots + k = \frac{k(k+1)}{2}$

3. Ind Step: at
$$k + 1$$
, we need to show
 $1 + 2 + \ldots + (k + 1) = \frac{(k+1)(k+2)}{2}$
 $\text{lhs} = 1 + 2 + \ldots + k + (k + 1) = (1 + 2 + \ldots k) + (k + 1)$
 $= \frac{k(k+1)}{2} + (k + 1)$ (By Induction Hypothesis)
 $= \frac{k(k+1)+2(k+1)}{2} = \frac{(k+2)(k+1)}{2} = rhs.$

4. Hence by induction we can conclude for all $n \in \mathbb{N}, n \ge 1$.

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by WOP

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by WOP

Any non-empty set of non-negative integers has a smallest element.

1. Suppose Not. i.e., the negation of the statement holds.

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by WOP

- 1. Suppose Not. i.e., the negation of the statement holds.
- 2. There exists some k for which $1 + 2 \dots k \neq \frac{k(k+1)}{2}$.

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by WOP

- 1. Suppose Not. i.e., the negation of the statement holds.
- 2. There exists some k for which $1 + 2 \dots k \neq \frac{k(k+1)}{2}$.
- 3. Let S be set of all such counter-examples, i.e., $S = \{\ell \in \mathbb{N} \mid 1 + 2 \dots \ell \neq \frac{\ell(\ell+1)}{2}\}$

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by WOP

- 1. Suppose Not. i.e., the negation of the statement holds.
- 2. There exists some k for which $1 + 2 \dots k \neq \frac{k(k+1)}{2}$.
- 3. Let S be set of all such counter-examples, i.e., $S = \{\ell \in \mathbb{N} \mid 1+2 \dots \ell \neq \frac{\ell(\ell+1)}{2}\}$
- 4. S is non-empty! Why? Because by above, $k \in S$.

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by WOP

- 1. Suppose Not. i.e., the negation of the statement holds.
- 2. There exists some k for which $1 + 2 \dots k \neq \frac{k(k+1)}{2}$.
- 3. Let S be set of all such counter-examples, i.e., $S = \{\ell \in \mathbb{N} \mid 1+2 \dots \ell \neq \frac{\ell(\ell+1)}{2}\}$
- 4. S is non-empty! Why? Because by above, $k \in S$.
- 5. By WOP, S must have a smallest element, let it be $k' \in S$.

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by WOP

- 1. Suppose Not. i.e., the negation of the statement holds.
- 2. There exists some k for which $1 + 2 \dots k \neq \frac{k(k+1)}{2}$.
- 3. Let S be set of all such counter-examples, i.e., $S = \{\ell \in \mathbb{N} \mid 1+2 \dots \ell \neq \frac{\ell(\ell+1)}{2}\}$
- 4. S is non-empty! Why? Because by above, $k \in S$.
- 5. By WOP, S must have a smallest element, let it be $k' \in S$.
- 6. $k' \neq 1$, so k' 1 exists. Because for n = 1, we use Base case!

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by WOP

- 1. Suppose Not. i.e., the negation of the statement holds.
- 2. There exists some k for which $1 + 2 \dots k \neq \frac{k(k+1)}{2}$.
- 3. Let S be set of all such counter-examples, i.e., $S = \{\ell \in \mathbb{N} \mid 1+2 \dots \ell \neq \frac{\ell(\ell+1)}{2}\}$
- 4. S is non-empty! Why? Because by above, $k \in S$.
- 5. By WOP, S must have a smallest element, let it be k' ∈ S.
 6. k' ≠ 1, so k' 1 exists. Because for n = 1, we use Base case!
 7. At k' 1 < k', statement is true, i.e., 1+2...(k'-1) = (k'-1)(k')/2.

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by WOP

- 1. Suppose Not. i.e., the negation of the statement holds.
- 2. There exists some k for which $1 + 2 \dots k \neq \frac{k(k+1)}{2}$.
- 3. Let S be set of all such counter-examples, i.e., $S = \{\ell \in \mathbb{N} \mid 1+2 \dots \ell \neq \frac{\ell(\ell+1)}{2}\}$
- 4. S is non-empty! Why? Because by above, $k \in S$.
- By WOP, S must have a smallest element, let it be k' ∈ S.
 k' ≠ 1, so k' 1 exists. Because for n = 1, we use Base case!
 At k' 1 < k', statement is true, i.e., 1+2...(k' - 1) = (k'-1)(k')/2.
 But now, 1+2...(k' - 1) + k' = (k'-1)(k')/2 + k' = k'(k'+1)/2.

Qn: Prove that $\forall n \in \mathbb{N}, n \ge 1, 1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ Proof by WOP

- 1. Suppose Not. i.e., the negation of the statement holds.
- 2. There exists some k for which $1 + 2 \dots k \neq \frac{k(k+1)}{2}$.
- 3. Let S be set of all such counter-examples, i.e., $S = \{\ell \in \mathbb{N} \mid 1+2 \dots \ell \neq \frac{\ell(\ell+1)}{2}\}$
- 4. S is non-empty! Why? Because by above, $k \in S$.
- 5. By WOP, S must have a smallest element, let it be k' ∈ S.
 6. k' ≠ 1, so k' 1 exists. Because for n = 1, we use Base case!
 7. At k' 1 < k', statement is true, i.e., 1+2...(k'-1) = (k'-1)(k')/2.
 8. Between 1 + 2...(k'-1) = (k'-1)(k')/2.
- 8. But now, $1 + 2 \dots (k' 1) + k' = \frac{(k' 1)(k')}{2} + k' = \frac{k'(k' + 1)}{2}$.
- 9. Implies $k' \notin S$. A contradiction.

From proofs to structures

From proofs to structures

Next: Chapter 2: Basic Discrete Structures

- ▶ Finite and Infinite Sets,
- ► Functions
- Relations

Sets

What is a set?

- ▶ A set is an unordered collection of objects.
- ▶ The objects in a set are called its elements.

§ 1

The Conception of Power or Cardinal Number

By an "aggregate" (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Ganzen) M of definite and separate objects mof our intuition or our thought. These objects are called the "elements" of M.

Figure: Georg Cantor (1845-1918); extract

What is a set?

- ▶ A set is an unordered collection of objects.
- ▶ The objects in a set are called its elements.

§ 1

The Conception of Power or Cardinal Number

By an "aggregate" (*Menge*) we are to understand any collection into a whole (*Zusammenfassung zu einem Ganzen*) M of definite and separate objects *m* of our intuition or our thought. These objects are called the "elements" of M.

Figure: Georg Cantor (1845-1918); extract

What is a set?

- ▶ A set is an unordered collection of objects.
- ▶ The objects in a set are called its elements.

More formally,

Let P be a property. Any collection of objects that are defined by (or satisfy) P is a set, i.e., $S = \{x \mid P(x)\}.$

Examples and properties

- ▶ We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- Let A, B be two sets. Recall the usual definitions:
 - Equality A = B, Subset $A \subseteq B$,

Examples and properties

- ▶ We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- Let A, B be two sets. Recall the usual definitions:
 - Equality A = B, Subset $A \subseteq B$,
 - Cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$

Examples and properties

- ▶ We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- Let A, B be two sets. Recall the usual definitions:

• Equality
$$A = B$$
, Subset $A \subseteq B$,

- Cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$
- Union $A \cup B = \{x \mid a \in A \text{ or } b \in B\}$

Examples and properties

- ▶ We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- Let A, B be two sets. Recall the usual definitions:

• Equality A = B, Subset $A \subseteq B$,

- Cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$
- Union $A \cup B = \{x \mid a \in A \text{ or } b \in B\}$
- Intersection $A \cap B = \{x \mid a \in A \text{ and } b \in B\}$

Examples and properties

- ▶ We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- Let A, B be two sets. Recall the usual definitions:
 - Equality A = B, Subset $A \subseteq B$,
 - Cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$
 - Union $A \cup B = \{x \mid a \in A \text{ or } b \in B\}$
 - Intersection $A \cap B = \{x \mid a \in A \text{ and } b \in B\}$
 - Empty set ϕ ,

Examples and properties

- ▶ We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- Let A, B be two sets. Recall the usual definitions:
 - Equality A = B, Subset $A \subseteq B$,
 - Cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$
 - Union $A \cup B = \{x \mid a \in A \text{ or } b \in B\}$
 - Intersection $A \cap B = \{x \mid a \in A \text{ and } b \in B\}$
 - Empty set ϕ ,
 - Power set of $A = \mathcal{P}(A)$ = set of all subsets of A.

Examples and properties

- ▶ We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- Let A, B be two sets. Recall the usual definitions:

• Equality
$$A = B$$
, Subset $A \subseteq B$,

- Cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$
- Union $A \cup B = \{x \mid a \in A \text{ or } b \in B\}$
- Intersection $A \cap B = \{x \mid a \in A \text{ and } b \in B\}$
- Empty set ϕ ,
- Power set of $A = \mathcal{P}(A)$ = set of all subsets of A.
- If U is the universe, then the complement of A, $\bar{A} = A^c = \{x \in U \mid x \notin A\}.$

Examples and properties

- ▶ We have already seen examples: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$, set of all horses,...
- Let A, B be two sets. Recall the usual definitions:

• Equality
$$A = B$$
, Subset $A \subseteq B$,

- Cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$
- Union $A \cup B = \{x \mid a \in A \text{ or } b \in B\}$
- Intersection $A \cap B = \{x \mid a \in A \text{ and } b \in B\}$
- Empty set ϕ ,
- Power set of $A = \mathcal{P}(A)$ = set of all subsets of A.
- If U is the universe, then the complement of A, $\bar{A} = A^c = \{x \in U \mid x \notin A\}.$

So, what is the difference between $\{\emptyset\}$ and \emptyset ?

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox Let $S = \{X \mid X \notin X\}$ Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox

Let $S = \{X \mid X \notin X\}$

Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

How do you resolve this?

Figure: Bertrand Russell (1872-1970)

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox Let $S = \{X \mid X \notin X\}$ Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a property $P, S = \{x \in A \mid P(x)\}$ is a set.

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox Let $S = \{X \mid X \notin X\}$ Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a property $P, S = \{x \in A \mid P(x)\}$ is a set.

Why does this definition get rid of Russell's paradox?

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox Let $S = \{X \mid X \notin X\}$ Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a property $P, S = \{x \in A \mid P(x)\}$ is a set.

Let $P(x) = x \notin x$. let A be a set and $S = \{x \in A \mid x \notin x\}$.

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox Let $S = \{X \mid X \notin X\}$ Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a property $P, S = \{x \in A \mid P(x)\}$ is a set.

Let $P(x) = x \notin x$. let A be a set and $S = \{x \in A \mid x \notin x\}$.

▶ if $(S \in S)$: from the definition of $S, S \in A$ and $S \notin S$, which is a contradiction.

A barber is a man in town who only shaves those who don't shave themselves.

Barber's paradox: Does the barber shave himself?

Russell's paradox Let $S = \{X \mid X \notin X\}$ Then if $S \in S$, then $S \notin S$ and if $S \notin S$, then $S \in S$!

Axiomatic approach to set theory (ZFC!)

Start with a few objects defined. Then for a set A and a property $P, S = \{x \in A \mid P(x)\}$ is a set.

Let $P(x) = x \notin x$. let A be a set and $S = \{x \in A \mid x \notin x\}$.

- ▶ if $(S \in S)$: from the definition of $S, S \in A$ and $S \notin S$, which is a contradiction.
- ▶ if $(S \notin S)$: from the definition, either $S \notin A$ or $S \in S$. But we have assumed that $S \notin S$. Hence, $S \notin A$. No contradiction!

Is the fun done? How do we compare sets?

▶ For two finite sets, this is easy, just count the number of elements and compare them!

Is the fun done? How do we compare sets?

- ▶ For two finite sets, this is easy, just count the number of elements and compare them!
- ▶ But what about two infinite sets?
- ▶ Example: {set of all even natural numbers} vs \mathbb{N} vs \mathbb{Q} vs \mathbb{R}

Is the fun done? How do we compare sets?

- ▶ For two finite sets, this is easy, just count the number of elements and compare them!
- ▶ But what about two infinite sets?
- ▶ Example: {set of all even natural numbers} vs \mathbb{N} vs \mathbb{Q} vs \mathbb{R}
- ▶ Turns out we need functions... but first...

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accomodate 1 or finitely many more guests, by shifting around the existing guests?

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accomodate 1 or finitely many more guests, by shifting around the existing guests?
- 2. What if infinitely many more guests arrive?

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accomodate 1 or finitely many more guests, by shifting around the existing guests?
- 2. What if infinitely many more guests arrive?
- 3. What if infinitely many more trains with infinitely many more guests arrive? (H.W)