CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay

Aug 13, 2024

Lecture 08 – Basic structures: sets and functions

1

From proofs to structures

From proofs to structures

Chapter 2: Basic Discrete Structures

- ▶ Finite and Infinite Sets,
- ► Functions
- Relations

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accomodate 1 or finitely many more guests, by shifting around the existing guests?

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accomodate 1 or finitely many more guests, by shifting around the existing guests?
- 2. What if infinitely many more guests arrive?

- ▶ Suppose there is a hotel with infinitely many rooms.
- ▶ And suppose they are all full (like in IIT guest house).
- 1. Can you accomodate 1 or finitely many more guests, by shifting around the existing guests?
- 2. What if infinitely many more guests arrive?
- 3. What if infinitely many more trains with infinitely many more guests arrive? (H.W)

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A. i.e., $f: A \to B$ is a subset R of $A \times B$ such that

(i) $\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and}$ (ii) if $(a, b) \in R$ and $(a, c) \in R$, then b = c.

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A. i.e., $f: A \to B$ is a subset R of $A \times B$ such that

(i)
$$\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and}$$

(ii) if $(a, b) \in R$ and $(a, c) \in R$, then $b = c$.

• We write f(a) = b and call b the image of a.

▶
$$Range(f) = \{b \in B \mid \exists a \in A \text{ s.t. } f(a) = b\}, Domain(f) = A$$

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A. i.e., $f: A \to B$ is a subset R of $A \times B$ such that

(i)
$$\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and}$$

(ii) if $(a, b) \in R$ and $(a, c) \in R$, then $b = c$.

Composition of functions

- If $g: A \to B$ and $f: B \to C$, then $f \circ g: A \to C$ is defined by $f \circ g(x) = f(g(x))$.
- ▶ Defined only if $Range(g) \subseteq Domain(f)$.
- Exercise: if $f(x) = x^2$, $g(x) = x x^3$ with $f, g : \mathbb{R} \to \mathbb{R}$, what is $f \circ g(x), g \circ f(x)$?

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A. i.e., $f: A \to B$ is a subset R of $A \times B$ such that

(i)
$$\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and}$$

(ii) if $(a, b) \in R$ and $(a, c) \in R$, then $b = c$.

Composition of functions is associative

• If $h: A \to B$ and $g: B \to C$ and $f: C \to D$, then $f \circ (g \circ h) = (f \circ g) \circ h$.

Check it! (H.W.)

What you did above was to define functions...

Definition

Let A, B be two sets. A function f from A to B is an assignment of exactly one element of B to each element of A. i.e., $f: A \to B$ is a subset R of $A \times B$ such that

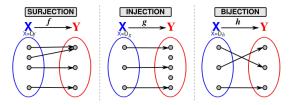
(i)
$$\forall a \in A, \exists b \in B \text{ such that } (a, b) \in R, \text{ and}$$

(ii) if $(a, b) \in R$ and $(a, c) \in R$, then $b = c$.

Inverse of a function

• If $f: A \to B$ is a ??? function, then $f^{-1}: B \to A$ defined by $f^{-1}(b) = a$ if f(a) = b, is called its inverse.

Comparing (finite and infinite) sets

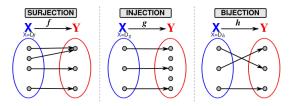


Surjective or onto: $f : A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y.

- ▶ Injective or 1-1: $f : A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y.
- Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.

If f is a bijection, then its inverse function exists and $f\circ f^{-1}=f^{-1}\circ f=\mathrm{id}$

Comparing (finite and infinite) sets



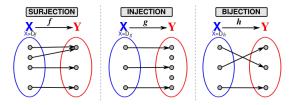
Surjective or onto: $f : A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y.

- ▶ Injective or 1-1: $f : A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y.
- Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective.

1.
$$f : \mathbb{Z} \to \mathbb{Z}$$
 such that $f(x) = x^2$.

2. $f : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ such that $f(x) = x^2$.

Comparing (finite and infinite) sets



Surjective or onto: $f : A \to B$ is surjective if $\forall y \in B$, $\exists x \in A$ such that f(x) = y. – If A, B finite, $|A| \ge |B|$

- ▶ Injective or 1-1: $f : A \to B$ is injective if $\forall x, y \in A$, if f(x) = f(y), then x = y. If A, B finite, $|A| \le |B|$
- ▶ Bijective or 1-1 correspondence: A function is bijective if it is surjective and injective. If A, B finite, |A| = |B|

1.
$$f : \mathbb{Z} \to \mathbb{Z}$$
 such that $f(x) = x^2$.

2. $f : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ such that $f(x) = x^2$.

Relative notion of "size"

Thus, two finite/infinite sets have the same "size" iff there is a bijection between them.

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from *A* to *B*, then \exists **bij** from *B* to *A*.
- ▶ \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B.

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from *A* to *B*, then \exists **bij** from *B* to *A*.
- ► (Schröder-Bernstein Theorem:) ∃ surj from A to B and ∃ surj B to A, implies ∃ bij from A to B. (H.W: Read this!)

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from *A* to *B*, then \exists **bij** from *B* to *A*.
- ► (Schröder-Bernstein Theorem:) ∃ surj from A to B and ∃ surj B to A, implies ∃ bij from A to B. (H.W: Read this!)

Differences between finite and infinite sets

▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from *A* to *B*, then \exists **bij** from *B* to *A*.
- ► (Schröder-Bernstein Theorem:) ∃ surj from A to B and ∃ surj B to A, implies ∃ bij from A to B. (H.W: Read this!)

Differences between finite and infinite sets

- ▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.
- ▶ What about infinite sets?

Theorem

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

One direction is easy.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

One direction is easy. (\Longleftarrow)

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

One direction is easy. (\Longleftarrow

1. Show contrapositive! If A is finite, then there can't be a bijection from A to $A \cup \{b\}$.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Now, lets see the more difficult direction (\Longrightarrow)

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Now, lets see the more difficult direction (\Longrightarrow)

1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}.$

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots, a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$.

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots, a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots, a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. Collecting all such $a'_i s$, we get a subset $A' = \{a_i \in A \mid i \in \mathbb{N}\} \subseteq A$. (Note it may be that $A \neq A'$).
- 5. Now, $\forall a \in A \text{ if } a \notin A'$, we define f(a) = a.

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots, a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. Collecting all such $a'_i s$, we get a subset $A' = \{a_i \in A \mid i \in \mathbb{N}\} \subseteq A$. (Note it may be that $A \neq A'$).
- 5. Now, $\forall a \in A \text{ if } a \notin A'$, we define f(a) = a.
- 6. f is a bijection! Prove surjection and injection...

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots, a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. Collecting all such $a'_i s$, we get a subset $A' = \{a_i \in A \mid i \in \mathbb{N}\} \subseteq A$. (Note it may be that $A \neq A'$).
- 5. Now, $\forall a \in A \text{ if } a \notin A'$, we define f(a) = a.
- 6. f is a bijection! Prove surjection and injection...

Corollary: Difference between finite vs infinite sets

▶ Even if A, B are infinite, $A \subset B$, there can be a bijection from A to B

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots, a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. Collecting all such $a'_i s$, we get a subset $A' = \{a_i \in A \mid i \in \mathbb{N}\} \subseteq A$. (Note it may be that $A \neq A'$).
- 5. Now, $\forall a \in A \text{ if } a \notin A'$, we define f(a) = a.
- 6. f is a bijection! Prove surjection and injection...

Corollary: Difference between finite vs infinite sets

▶ Even if A, B are infinite, $A \subset B$, there can be a bijection from A to B, i.e., they have the same "cardinality".

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let

 $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.

- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots, a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. Collecting all such $a'_i s$, we get a subset $A' = \{a_i \in A \mid i \in \mathbb{N}\} \subseteq A$. (Note it may be that $A \neq A'$).
- 5. Now, $\forall a \in A \text{ if } a \notin A'$, we define f(a) = a.
- 6. f is a bijection! Prove surjection and injection...

Corollary: Difference between finite vs infinite sets

- Even if A, B are infinite, $A \subset B$, there can be a bijection from A to B, i.e., they have the same "cardinality".
- From any set A, there is a surjection from A to \mathbb{N} .