CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay

Aug 19, 2024

Lecture 09 – Basic structures: Countable sets and functions

Recap of last 8 lectures

Week 01 & 02

- ▶ What are discrete structures?
- ▶ Chapter 1: Proofs and mathematical reasoning
 - ▶ Propositions: statements that can be assigned a truth value
 - Predicates and Quantifiers
 - ▶ Theorems and types of proofs: contradiction, contrapositive
 - ▶ Induction, WOP, Strong Induction

Recap of last 8 lectures

Week 01 & 02

- ▶ What are discrete structures?
- ▶ Chapter 1: Proofs and mathematical reasoning
 - ▶ Propositions: statements that can be assigned a truth value
 - Predicates and Quantifiers
 - ▶ Theorems and types of proofs: contradiction, contrapositive
 - ▶ Induction, WOP, Strong Induction

Week 03

- ▶ Chapter 2: Basic Mathematical Structures
- ▶ Sets, functions, infinite sets

Recap of last 8 lectures

Week 01 & 02

- ▶ What are discrete structures?
- ▶ Chapter 1: Proofs and mathematical reasoning
 - ▶ Propositions: statements that can be assigned a truth value
 - Predicates and Quantifiers
 - ▶ Theorems and types of proofs: contradiction, contrapositive
 - ▶ Induction, WOP, Strong Induction

Week 03

- ▶ Chapter 2: Basic Mathematical Structures
- Sets, functions, infinite sets

Three problem-sheets released on Piazza

- ▶ TA Problem solving session at 7pm
- ▶ Venue: Computing Complex 1st floor: CC 105/103

Relative notion of "size"

Thus, two finite/infinite sets have the same "size" iff there is a bijection between them.

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from *A* to *B*, then \exists **bij** from *B* to *A*.
- ▶ \exists surj from A to B and \exists surj B to A, implies \exists bij from A to B.

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from *A* to *B*, then \exists **bij** from *B* to *A*.
- ► (Schröder-Bernstein Theorem:) ∃ surj from A to B and ∃ surj B to A, implies ∃ bij from A to B. (H.W: Read this!)

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from *A* to *B*, then \exists **bij** from *B* to *A*.
- ► (Schröder-Bernstein Theorem:) ∃ surj from A to B and ∃ surj B to A, implies ∃ bij from A to B. (H.W: Read this!)

Differences between finite and infinite sets

▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from *A* to *B*, then \exists **bij** from *B* to *A*.
- ► (Schröder-Bernstein Theorem:) ∃ surj from A to B and ∃ surj B to A, implies ∃ bij from A to B. (H.W: Read this!)

- ▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.
- ▶ Theorem: Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists bij from A to B, then \exists bij from B to A.
- ► (Schröder-Bernstein Theorem:) ∃ surj from A to B and ∃ surj B to A, implies ∃ bij from A to B. (H.W: Read this!)

- ▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.
- ▶ Theorem: Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.
- ▶ If A, B are infinite, we can have $A \subsetneq B$, and a bijection from A to B

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from *A* to *B*, then \exists **bij** from *B* to *A*.
- ► (Schröder-Bernstein Theorem:) ∃ surj from A to B and ∃ surj B to A, implies ∃ bij from A to B. (H.W: Read this!)

- ▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.
- ▶ Theorem: Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.
- ▶ If A, B are infinite, we can have $A \subsetneq B$, and a bijection from A to B, i.e., they have the same "cardinality".

Similarities between finite and infinite sets

- ▶ \exists **bij** from A to B and B to C, implies \exists **bij** from A to C.
- ▶ \exists **bij** from *A* to *B*, then \exists **bij** from *B* to *A*.
- ► (Schröder-Bernstein Theorem:) ∃ surj from A to B and ∃ surj B to A, implies ∃ bij from A to B. (H.W: Read this!)

- ▶ For finite sets, if A is a set and $b \notin A$, then $|A| \neq |A \cup \{b\}|$.
- ▶ Theorem: Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.
- ▶ If A, B are infinite, we can have $A \subsetneq B$, and a bijection from A to B, i.e., they have the same "cardinality".
- From any infinite set A, there is a surjection from A to \mathbb{N} .

Theorem

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

One direction is easy.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

One direction is easy. (\Longleftarrow)

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

One direction is easy. (\Longleftarrow

1. Show contrapositive! If A is finite, then there can't be a bijection from A to $A \cup \{b\}$.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Now, lets see the more difficult direction (\Longrightarrow)

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

Now, lets see the more difficult direction (\Longrightarrow)

1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$.

Theorem

Let A be a set and $b \notin A$. Then A is infinite iff there is a bijection from A to $A \cup \{b\}$.

1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}.$

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots, a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$.

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots, a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots, a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. Collecting all such $a'_i s$, we get a subset $A' = \{a_i \in A \mid i \in \mathbb{N}\} \subseteq A$. (Note it may be that $A \neq A'$).
- 5. Now, $\forall a \in A$ if $a \notin A'$, we define f(a) = a.

Theorem

- 1. If A infinite, then $A \neq \emptyset$, so let $a_0 \in A$. Define $f(a_0) = b$.
- 2. Now $A \setminus \{a_0\}$ is infinite \implies non-empty, so let $a_1 \in A \setminus \{a_0\}$. Define $f(a_1) = a_0$.
- 3. $\forall i \in \mathbb{N}, i \geq 1, A \setminus \{a_0, \dots, a_{i-1}\}$ is infinite, hence non-empty, so let $a_i \in A \setminus \{a_0, \dots, a_{i-1}\}$. Define $f(a_i) = a_{i-1}$.
- 4. Collecting all such $a'_i s$, we get a subset $A' = \{a_i \in A \mid i \in \mathbb{N}\} \subseteq A$. (Note it may be that $A \neq A'$).
- 5. Now, $\forall a \in A \text{ if } a \notin A'$, we define f(a) = a.
- 6. f is a bijection! Prove surjection and injection...

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N} .

Proof: Hilbert's hotel argument. But how do you formalize it?

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N} .

Proof: Hilbert's hotel argument. But how do you formalize it?

$$f(x) = \begin{cases} -2x & \text{if } x \le 0\\ 2x - 1 & \text{else} \end{cases}$$

Comparing infinite sets using functions

Theorem

There is a bijection from \mathbb{Z} to \mathbb{N} .

Proof: Hilbert's hotel argument. But how do you formalize it?

$$f(x) = \begin{cases} -2x & \text{if } x \le 0\\ 2x - 1 & \text{else} \end{cases}$$

Some questions...

- 1. Is there a bijection between $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} ?
- 2. Is there a bijection between $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ to \mathbb{N} ?
- 3. Is there a bijection from \mathbb{Q} to \mathbb{N} ?
- 4. Is there a bijection from the set of all subsets of \mathbb{N} to \mathbb{N} ?
- 5. Is there a bijection from \mathbb{R} to \mathbb{N} ?

Countable and countably infinite sets

Definition

- For a given set C, if there is a bijection from C to \mathbb{N} , then C is called countably infinite.
- A set is **countable** if it is finite or countably infinite.

Examples: even numbers, number of horses,...

By previous corollary $(\exists \text{ surj from any infinite set to } \mathbb{N})$ Countably infinite sets are the "smallest" infinite sets.

Countable and countably infinite sets

Definition

- For a given set C, if there is a bijection from C to \mathbb{N} , then C is called countably infinite.
- A set is **countable** if it is finite or countably infinite.

Examples: even numbers, number of horses,...

By previous corollary $(\exists \text{ surj from any infinite set to } \mathbb{N})$ Countably infinite sets are the "smallest" infinite sets. What are the other properties of countable sets?

Some questions...

Are the following sets countable? That is, is there a bijection from these sets to \mathbb{N} ?

- ▶ the set of all integers \mathbb{Z}
- $\blacktriangleright \ \mathbb{N} \times \mathbb{N}$
- $\blacktriangleright \ \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- ▶ the set of rationals \mathbb{Q}
- ▶ the set of all (finite and infinite) subsets of \mathbb{N}
- ▶ the set of all real numbers \mathbb{R}

Some questions...

Are the following sets countable? That is, is there a bijection from these sets to \mathbb{N} ?

- ▶ the set of all integers \mathbb{Z}
- $\blacktriangleright \ \mathbb{N} \times \mathbb{N}$
- $\blacktriangleright \ \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- ▶ the set of rationals \mathbb{Q}
- ▶ the set of all (finite and infinite) subsets of \mathbb{N}
- ▶ the set of all real numbers \mathbb{R}

To show these it suffices to show that

 \blacktriangleright there is an injection from these sets to $\mathbb N$

Some questions...

Are the following sets countable? That is, is there a bijection from these sets to \mathbb{N} ?

- \blacktriangleright the set of all integers \mathbbm{Z}
- $\blacktriangleright \ \mathbb{N} \times \mathbb{N}$
- $\blacktriangleright \ \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- ▶ the set of rationals \mathbb{Q}
- ▶ the set of all (finite and infinite) subsets of \mathbb{N}
- ▶ the set of all real numbers \mathbb{R}

To show these it suffices to show that

- \blacktriangleright there is an injection from these sets to $\mathbb N$
- ▶ or there is a surjection from N (or any countable set) to these sets.

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

1. $B = \{b_0\}$ is a singleton

2.
$$B = \{b_0, \ldots, b_n\}$$
 is a finite set

3. $B = \{b_0, \ldots\}$ is a countably infinite set

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set

Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?

• But then what is the position of b_i (i.e., natural number corresponding to it)?

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set

- But then what is the position of b_i (i.e., natural number corresponding to it)?
- ▶ Rather, choose $\{a_0, b_0, a_1, b_1, ...\}$, then b_i is at $(2i + 1)^{th}$ position.

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

1. $B = \{b_0\}$ is a singleton

2.
$$B = \{b_0, \ldots, b_n\}$$
 is a finite set

3. $B = \{b_0, \ldots\}$ is a countably infinite set

- But then what is the position of b_i (i.e., natural number corresponding to it)?
- ▶ Rather, choose $\{a_0, b_0, a_1, b_1, ...\}$, then b_i is at $(2i + 1)^{th}$ position.
- ▶ Formally, define a bijection $f : (A \cup B) \to \mathbb{N}$ by $f(a_i) = 2i$ and $f(b_i) = 2i + 1$

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

1. $B = \{b_0\}$ is a singleton

2.
$$B = \{b_0, \ldots, b_n\}$$
 is a finite set

3. $B = \{b_0, \ldots\}$ is a countably infinite set

- But then what is the position of b_i (i.e., natural number corresponding to it)?
- ▶ Rather, choose $\{a_0, b_0, a_1, b_1, ...\}$, then b_i is at $(2i + 1)^{th}$ position.
- Formally, define a bijection $f: (A \cup B) \to \mathbb{N}$ by $f(a_i) = 2i$ and $f(b_i) = 2i + 1$
- ▶ Is this correct?

Theorem: The cartesian product of two countably infinite sets is countably infinite

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

• That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

• That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

 $\blacktriangleright \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{Z} \times \mathbb{N} \text{ are countable.}$

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

- $\blacktriangleright \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{Z} \times \mathbb{N} \text{ are countable.}$
- ▶ The set of (positive) rationals is countable.

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}.$

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

- $\blacktriangleright \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{N} \times \mathbb{N}, \mathbb{N} \times \mathbb{Z} \times \mathbb{N} \text{ are countable.}$
- ▶ The set of (positive) rationals is countable.

Hint: Show that $f(a, b) = \begin{cases} a/b \text{ if } b \neq 0\\ 0 \text{ if } b = 0 \end{cases}$, is a surjection. How does the result follow?

Countable sets and functions

Are the following sets countable?

- ▶ the set of all integers \mathbb{Z}
- $\blacktriangleright \mathbb{N} \times \mathbb{N}$
- $\blacktriangleright \ \mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- ▶ the set of rationals \mathbb{Q}
- \blacktriangleright the set of all (finite and infinite) subsets of $\mathbb N$
- ▶ the set of all real numbers \mathbb{R}