
CS 105: Department Introductory Course
on Discrete Structures

Instructor : S. Akshay

Aug 22, 2024

Lecture 11 – Basic structures: Relations
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Logistics

Quiz 1

▶ VENUE: LH 101, 102, 301, 302

▶ Date and time: Aug 28th, 8.25am
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Summary and moving on...

Week 01 and 02: Proofs and Reasoning

▶ Propositions, Predicates, Quantifiers

▶ Theorems and Types of Proofs

▶ Induction and variants

Week 03 and 04: Basic Mathematical Structures

▶ Finite and infinite sets.

▶ Using functions to compare sets: focus on bijections.

▶ Countable, countably infinite and uncountable sets.

▶ Cantor’s diagonalization argument (A new powerful proof
technique!).

Next: Basic Mathematical Structures – Relations
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Relations

Definition: Function
Let A, B be two sets. A function f from A to B is a subset R
of A×B such that

(i) ∀a ∈ A, ∃b ∈ B such that (a, b) ∈ R, and

(ii) if (a, b) ∈ R and (a, c) ∈ R, then b = c.

▶ Now, suppose A is the set of all Btech students and B is
the set of all courses. Clearly, we can assign to each student
the set of courses he/she is taking. Is this a function?

▶ By removing the two extra assumptions in the defn, we get:

Definition: Relation

▶ A relation R from A to B is a subset of A×B. If
(a, b) ∈ R, we also write this as a R b.

▶ Thus, a relation is a way to relate the elements of two (not
necessarily different) sets.
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Examples and representations of relations

We write R(A,B) for a relation from A to B and just R(A) if
A = B. Also if A is clear from context, we just write R.

Examples of relations

▶ All functions are relations.

▶ R1(Z) = {(a, b) | a, b ∈ Z, a− b is even }.
▶ R2(Z) = {(a, b) | a, b ∈ Z, a ≤ b}.
▶ Let S be a set, R3(P(S)) = {(A,B) | A,B ⊆ S,A ⊆ B}.
▶ Relational databases are practical examples.

Representations of a relation from A to B.

▶ As a set of ordered pairs of elements, i.e., subset of A×B.

▶ As a directed graph.

▶ As a (database) table.
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Use of relations

Practical application in relational databases: IMDB, university
records, etc.

But, why study relations in this course?

▶ Functions were special kinds of relations that were useful to
compare sets.

▶ Are there other special relations?What are they useful for?
▶ Equivalence relations
▶ Partial orders
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Partitions of a set – grouping “like” elements

Examples

▶ Natural numbers are partitioned into even and odd.

▶ This class is partitioned into sets of students from same
hostel.

How do you define a partition?

Definition
A partition of a set S is a set P of its subsets such that

▶ if S′ ∈ P , then S′ ̸= ∅.
▶

⋃
S′∈P

S′ = S : its union covers entire set S.

▶ If S1, S2 ∈ P , then S1 ∩ S2 = ∅: sets are disjoint.

Can you think of two trivial partitions that any set must have?
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Interpreting partitions as relations

Thus, a partition divides S into subsets that each contain
(only) elements that share some common property. e.g.,

▶ Evenness or oddness (formally, remainder modulo 2!).

▶ Same hostel...

▶ But, this sounds like relation, right? Which one?

Relation generated by a partition

▶ Clearly all elements in a set of the partition are related by
the “sameness” or “likeness” property.

▶ So can we define this as a relation? aRb if a is “like” b.

▶ Formally, we define R(S) by aRb if a and b belong to the
same set in the partition of S.

What properties does this relation have?
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Properties of a relation generated by a partition

1. All elements must be related to themselves

▶ A relation R(S) is called reflexive if for all a ∈ S, aRa.

2. If a is “like” b, then b must be “like” a.
▶ A relation R(S) is called symmetric if for all a, b ∈ S, we

have aRb implies bRa.

3. If a is “like” b and b is “like” c, then a must be “like” c.
▶ A relation R(S) called transitive if for all a, b, c ∈ S, we

have aRb and bRc implies aRc.

Any other defining properties?

Definition
A relation which satisfies all these three properties is called an
equivalence relation.

Thus, from any partition, we get an equivalence relation. Is the
converse true?
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Examples

▶ Reflexive: ∀a ∈ S, aRa.

▶ Symmetric: ∀a, b ∈ S, aRb implies bRa.

▶ Transitive: ∀a, b, c ∈ S, aRb, bRc implies aRc.

▶ Equivalence: Reflexive, Symmetric and Transitive.

Relation Refl. Sym. Trans. Equiv.

aR4b if students a and b take
same set of courses

✓ ✓ ✓ ✓

aR5b if student a takes course b

{(a, b) | a, b ∈ Z, (a− b) mod 2 = 0}
{(a, b) | a, b ∈ Z, a ≤ b}
{(a, b) | a, b ∈ Z, a < b}
{(a, b) | a, b ∈ Z, a | b}
{(a, b) | a, b ∈ R, |a− b| < 1}
{((a, b), (c, d)) | (a, b), (c, d) ∈
Z× (Z \ {0}), (ad = bc)}
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Partitions of a set – grouping “like” elements

Definition
A partition of a set S is a set P of its subsets such that

▶ if S′ ∈ P , then S′ ̸= ∅.
▶

⋃
S′∈P

S′ = S : its union covers entire set S.

▶ If S1, S2 ∈ P , then S1 ∩ S2 = ∅: sets are disjoint.

Example: natural numbers partitioned into even and odd...

Theorem
Every partition of set S gives rise to a canonical equivalence
relation R on S, namely,

▶ aRb if a and b belong to the same set in the partition of S.

Is the converse true? Can we generate a partition from every
equivalence relation?
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