CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay

Aug 27, 2024

Lecture 13 – Basic structures: relations: posets

Logistics

Quiz 1

- ▶ Date and time: Aug 28th, Wednesday, 8.25am
- ▶ Syllabus: All material till last and including last lecture!
- ► VENUE:
 - ▶ LH 101, 102
 - ▶ PwD students: LT 105

Recap and moving on...

Week 01 and 02: Proofs and Reasoning

- ▶ Propositions, Predicates, Quantifiers
- ▶ Theorems and Types of Proofs
- ▶ Induction and variants

Week 03 and 04: Basic Mathematical Structures

- ▶ Finite and infinite sets.
- ▶ Using functions to compare sets: focus on bijections.
- ▶ Countable, countably infinite and uncountable sets.
- Cantor's diagonalization argument (A new powerful proof technique!).

Recap and moving on...

Week 01 and 02: Proofs and Reasoning

- ▶ Propositions, Predicates, Quantifiers
- ▶ Theorems and Types of Proofs
- ▶ Induction and variants

Week 03 and 04: Basic Mathematical Structures

- ▶ Finite and infinite sets.
- ▶ Using functions to compare sets: focus on bijections.
- ▶ Countable, countably infinite and uncountable sets.
- Cantor's diagonalization argument (A new powerful proof technique!).

Basic Mathematical Structures – Relations

▶ Equivalence relations and partitions of a set

Defining new objects using equivalence relations Consider $R = \{((a,b), (c,d)) \mid (a,b), (c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc)\}.$

Defining new objects using equivalence relations Consider

 $R=\{((a,b),(c,d))\mid (a,b),(c,d)\in\mathbb{Z}\times(\mathbb{Z}\setminus\{0\}),(ad=bc)\}.$

▶ Then the equivalence classes of R define the rational numbers.

• e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.

▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\left[\frac{p}{q}\right]$.

Defining new objects using equivalence relations Consider

 $R=\{((a,b),(c,d))\mid (a,b),(c,d)\in\mathbb{Z}\times(\mathbb{Z}\setminus\{0\}),(ad=bc)\}.$

▶ Then the equivalence classes of R define the rational numbers.

• e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.

- ▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\left\lceil \frac{p}{q} \right\rceil$.
- With this definition, why are addition and multiplication "well-defined"?

Defining new objects using equivalence relations Consider

 $R=\{((a,b),(c,d))\mid (a,b),(c,d)\in\mathbb{Z}\times(\mathbb{Z}\setminus\{0\}),(ad=bc)\}.$

▶ Then the equivalence classes of R define the rational numbers.

• e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.

- ▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\left\lfloor \frac{p}{q} \right\rfloor$.
- With this definition, why are addition and multiplication "well-defined"?

Can we define integers and real numbers starting from naturals by using equivalence classes?

Cut-and-paste

Consider the relation $R([0,1]) = \{aRb \mid a, b \in [0,1], \text{ either } a = b \text{ or } a = 1, b = 0, \text{ or } a = 0, b = 1\}.$

▶ Is R an equivalence relation? What does it define?

Cut-and-paste

Consider the relation $R([0,1]) = \{aRb \mid a, b \in [0,1], \text{ either } a = b \text{ or } a = 1, b = 0, \text{ or } a = 0, b = 1\}.$

- ▶ Is R an equivalence relation? What does it define?
- ▶ This is [0, 1] in which the end-points have been related to each other.
- ▶ So the equivalence classes form a "loop", since end-points are joined. If we imagine [0, 1] as a 1-length string, we have glued its ends!

Cut-and-paste

Consider the relation $R([0,1]) = \{aRb \mid a, b \in [0,1], \text{ either } a = b \text{ or } a = 1, b = 0, \text{ or } a = 0, b = 1\}.$

- ▶ Is R an equivalence relation? What does it define?
- ▶ This is [0, 1] in which the end-points have been related to each other.
- ▶ So the equivalence classes form a "loop", since end-points are joined. If we imagine [0, 1] as a 1-length string, we have glued its ends!

Can you build even more interesting "shapes"? Torus? Mobius strip?!

Forming 2D objects

Consider a rectangular piece of the real plane, $[0,1]\times[0,1].$

or

▶ Define $R_1([0,1] \times [0,1])$ by $(a,b)R_1(c,d)$ if

(
$$a, b$$
) = (c, d) or
 $b = d, a = 0, c = 1$

▶
$$b = d, c = 0, a = 1.$$

Is R_1 an equivalence relation? What do its equivalence classes define?

Forming 2D objects

Consider a rectangular piece of the real plane, $[0,1]\times[0,1].$

• Define $R_1([0,1] \times [0,1])$ by $(a,b)R_1(c,d)$ if

$$b = d, a = 0, c = 1 \text{ or}$$

$$b = d, c = 0, a = 1.$$

Is R_1 an equivalence relation? What do its equivalence classes define?

▶ Define $R_2([0,1] \times [0,1])$ by $(a,b)R_2(c,d)$ if

$$(a,b) = (c,d) \text{ or }$$

▶ $a, b, c, d \in \{0, 1\}.$

Is R_2 an equivalence relation? What does it define?

Can you build even more interesting "shapes"? Torus? Mobius strip?!

Moving on another special relation: Partial Orders Consider $\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}.$

Moving on another special relation: Partial Orders

Consider $\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Consider $\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all $a, b \in S$ aRb and bRa implies a = b.

Consider $\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all $a, b \in S$ aRb and bRa implies a = b.

Examples:

$$\blacktriangleright R_1(\mathbb{Z}) = \{(a,b) \mid a, b \in \mathbb{Z}, a \le b\}.$$

$$\blacktriangleright R_2(\mathcal{P}(S)) = \{(A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}.$$

Consider $\{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all $a, b \in S$ aRb and bRa implies a = b.

Examples:

$$\blacktriangleright R_1(\mathbb{Z}) = \{(a,b) \mid a, b \in \mathbb{Z}, a \le b\}.$$

 $\blacktriangleright R_2(\mathcal{P}(S)) = \{ (A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B \}.$

Definition

A partial order is a relation which is reflexive, transitive and anti-symmetric.

Partial orders and equivalences relations

- ▶ Reflexive: $\forall a \in S, aRa.$
- Symmetric: $\forall a, b \in S, aRb$ implies bRa.
- Anti-symmetric: $\forall a, b \in S, aRb, bRa$ implies a = b.
- ▶ Transitive: $\forall a, b, c \in S, aRb, bRc$ implies aRc.

Partial orders and equivalences relations

- ▶ Reflexive: $\forall a \in S, aRa.$
- Symmetric: $\forall a, b \in S, aRb$ implies bRa.
- ▶ Anti-symmetric: $\forall a, b \in S, aRb, bRa$ implies a = b.
- ▶ Transitive: $\forall a, b, c \in S, aRb, bRc$ implies aRc.

	Reflexive	Transitive	Symmetric	Anti-symmetric
Equivalence	\checkmark	\checkmark	\checkmark	
relation				
Partial order	\checkmark	\checkmark		\checkmark

Partial orders and equivalences relations

▶ Reflexive: $\forall a \in S, aRa.$

- Symmetric: $\forall a, b \in S, aRb$ implies bRa.
- ▶ Anti-symmetric: $\forall a, b \in S, aRb, bRa$ implies a = b.
- ▶ Transitive: $\forall a, b, c \in S, aRb, bRc$ implies aRc.

	Refl.	Anti-Sym	Trans.	PO
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A,B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(a,b) \mid a, b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a, b \in \mathbb{Z}^+, a \mid b\}$				
$\frac{1}{\{((a,b),(c,d)) \mid (a,b),(c,d) \in A\}} $				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$				

	Refl.	Anti-Sym	Trans.	PO
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A,B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(a,b) \mid a, b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\frac{1}{\{((a,b),(c,d)) \mid (a,b),(c,d) \in A\}}$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$				

▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.

	Refl.	Anti-Sym	Trans.	PO
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A,B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(a,b) \mid a, b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\frac{1}{\{((a,b),(c,d)) \mid (a,b),(c,d) \in A\}}$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$				

▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.

▶ Why is it called "partial" order?

	Refl.	Anti-Sym	Trans.	PO
$\{(a,b) \mid a, b \in \mathbb{Z}, a \le b\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A,B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(a,b) \mid a, b \in \mathbb{Z}, a < b\}$				
$\overline{\{(a,b) \mid a, b \in \mathbb{Z}^+, a \mid b\}}$				
$\begin{array}{ c c c c }\hline \{((a,b),(c,d)) & & (a,b),(c,d) & \in \end{array}$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$				

▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.

Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).

	Refl.	Anti-Sym	Trans.	PO
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A,B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark
$\{(a,b) \mid a, b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\frac{1}{\{((a,b),(c,d)) \mid (a,b),(c,d) \in A\}} $				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$				

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).
- ▶ A total order is a partial order \leq on S in which every pair of elements is comparable

• i.e.,
$$\forall a, b \in S$$
, either $a \leq b$ or $b \leq a$.

	Refl.	Anti-Sym	Trans.	PO	TO
$\{(a,b) \mid a, b \in \mathbb{Z}, a \le b\}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A,B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark	×
$\{(a,b) \mid a, b \in \mathbb{Z}, a < b\}$					
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$					
$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $					
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$					

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).
- ▶ A total order is a partial order \leq on S in which every pair of elements is comparable

• i.e., $\forall a, b \in S$, either $a \leq b$ or $b \leq a$.

	Refl.	Anti-Sym	Trans.	PO	TO
$\{(a,b) \mid a, b \in \mathbb{Z}, a \le b\}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A,B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark	×
$\{(a,b) \mid a, b \in \mathbb{Z}, a < b\}$					
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$					
$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $					
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$					

- We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).
- ▶ A total order is a partial order \leq on S in which every pair of elements is comparable
- ▶ Qn: Can a relation be symmetric and anti-symmetric?

	Refl.	Anti-Sym	Trans.	PO	TO
$\{(a,b) \mid a, b \in \mathbb{Z}, a \le b\}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\{(A,B) \mid A, B \in \mathcal{P}(S), A \subseteq B\}$	\checkmark	\checkmark	\checkmark	\checkmark	×
$\{(a,b) \mid a, b \in \mathbb{Z}, a < b\}$					
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$					
$\frac{1}{\{((a,b),(c,d)) \mid (a,b),(c,d) \in A\}} $					
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$					

- We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).
- ▶ A total order is a partial order \leq on S in which every pair of elements is comparable
- ▶ Qn: Can a relation be symmetric and anti-symmetric?
- ▶ Qn: Can a relation be neither symmetric nor anti-symmetric?

Partially ordered sets (Posets)

Definition

A set S together with a partial order \leq on S, is called a partially-ordered set or poset, denoted (S, \leq) .

Partially ordered sets (Posets)

Definition

A set S together with a partial order \leq on S, is called a partially-ordered set or poset, denoted (S, \leq) .

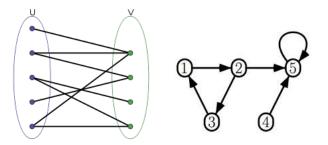
Examples

- (ℤ, ≤): integers with the usual less than or equal to relation.
- ▶ $(\mathcal{P}(S), \subseteq)$: powerset of any set with the subset relation.
- ▶ $(\mathbb{Z}^+, |$): positive integers with divisibility relation.

Graphical representation of relations: posets

Recall: any relation on a set can be represented as a graph with

- ▶ nodes as elements of the set and
- directed edges between them indicating the ordered pairs that are related.



▶ Did these come from posets?

▶ Do graphs defined by posets have any "special" properties?