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Lecture 14 – Basic structures: posets
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Summary

Week 01 and 02: Proofs and Reasoning

▶ Propositions, Predicates, Quantifiers

▶ Theorems and Types of Proofs

▶ Induction and variants

Week 03 and 04: Basic Structures – Sets and Functions

▶ Finite and infinite sets.

▶ Using functions to compare sets: focus on bijections.

▶ Countable, countably infinite and uncountable sets.

▶ Cantor’s diagonalization argument (A new powerful proof
technique!).

Week 05: Basic Structures – Relations

▶ Equivalence relations and partitions of a set

▶ Partially ordered sets (posets)
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Partially ordered sets (Posets)

Definition
A set S together with a partial order ⪯ on S, is called a
partially-ordered set or poset, denoted (S,⪯).

Examples

▶ (Z,≤): integers with the usual less than or equal to
relation.

▶ (P(S),⊆): powerset of any set with the subset relation.

▶ (Z+, | ): positive integers with divisibility relation.
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Graphical representation of relations: posets

Recall: any relation on a set can be represented as a graph with

▶ nodes as elements of the set and

▶ directed edges between them indicating the ordered pairs
that are related.

▶ Did these come from posets?

▶ Do graphs defined by posets have any “special” properties?
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Graphical representation of relations: posets

▶ Let S = {1, 2, 3}. Recall the poset (P(S),⊆).
▶ How does the graph of (P(S),⊆) look like?

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure: Graph of a poset and its Hasse diagram

▶ What is “special” about these graphs?
▶ Graphs of posets are “acyclic” (except for self-loops).
▶ Starting from a node and following the directed edges

(except self-loops), one can’t come back to the same node.
▶ Given the Hasse diagram of a poset, its reflexive transitive

closure gives back the graph of the poset.
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Chains and Anti-chains

Definition
Let (S,⪯) be a poset. A subset B ⊆ S is called

▶ a chain if every pair of elements in B is related by ⪯.

▶ That is, ∀a, b ∈ B, we have a ⪯ b or b ⪯ a (or both).

▶ Thus, ⪯ is a total order on B.

Definition
Let (S,⪯) be a poset. A subset A ⊆ S is called

▶ an anti-chain if no two distinct elements of A are related to
each other under ⪯.

▶ That is, ∀a, b ∈ A, a ̸= b, we have neither a ⪯ b nor b ⪯ a.
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Chains and Anti-chains: examples

▶ Let S = {1, 2, 3}.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure: Graph of poset (P(S),⊆) and its Hasse diagram

▶ What are the chains in this poset?

▶ What are the anti-chains in this poset?
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Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

boil egg cut veg heat oil clean/cut chkn steam rice

make garnish

add spices/saute

saute/cook

mix

arrange/serve

▶ Clearly, this shows the dependencies.

▶ But when you cook you need a total order, right?

▶ Further, this total order must be consistent with the po.

▶ This is called a linearization or a topological sorting.
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Topological sorting

Definition
A topological sort or a linearization of a poset (S,⪯) is a poset
(S,⪯t) with a total order ⪯t such that x ⪯ y implies x ⪯t y.

Theorem
Every finite poset has a topological sort.

Proof:

▶ First prove the following lemma:
▶ Every finite non-empty poset has at least one minimal

element (x is minimal if ̸ ∃y, y ⪯ x).

What about infinite posets?

▶ Then, construct the chain to complete the proof.
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Minimal (and maximal?) elements

Lemma
Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

▶ Choose x1 from the poset - either it is minimal, or there is
some x2 ̸= x1 s.t. x2 ⪯ x1.

▶ If x2 is minimal, we are done; otherwise there is some
x3 ̸= x2 s.t. x3 ⪯ x2.

▶ Repeating this step k + 1 times, we get
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Minimal (and maximal?) elements

Lemma
Every finite non-empty poset has at least one minimal element.

Proof: Suppose that the poset has k elements.

▶ Choose x1 from the poset - either it is minimal, or there is
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▶ If x2 is minimal, we are done; otherwise there is some
x3 ̸= x2 s.t. x3 ⪯ x2.

▶ Repeating this step k + 1 times, we get

xk+1 ⪯ xk ⪯ · · ·xj ⪯ · · · ⪯ xi+1 ⪯ xi ⪯ · · · ⪯ x2 ⪯ x1

▶ Since size of poset is k, we must have xj = xi, j < i.
We get xj ⪯ xi+1 and xi+1 ⪯ xj (violates anti-symmetry)
Contradiction!

What about infinite posets?
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Topological sort

Theorem
Every finite poset has a topological sort.

Proof: (H.W)

▶ We use the Lemma
▶ Every finite non-empty poset has at least one minimal

element (x is minimal if ̸ ∃y, y ⪯ x).

▶ To construct a chain, and complete the proof.

Give an example on the poset seen earlier!
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