CS 105: Department Introductory Course on Discrete Structures

Instructor : S. Akshay

Sep 02, 2024

Lecture 15 – Basic structures: chains and anti-chains

Optional help session today: at $7\mathrm{pm}$

 \blacktriangleright Problemsheet 5

Optional help session today: at $7\mathrm{pm}$

- Problemsheet 5
- Answersheets of Quiz 1
 - ▶ Answerkey and grading scheme on piazza by afternoon.

Optional help session today: at 7pm

- Problemsheet 5
- Answersheets of Quiz 1
 - ▶ Answerkey and grading scheme on piazza by afternoon.
 - ▶ Venue: KR125, Time: 7.45pm onwards.

Optional help session today: at 7pm

Problemsheet 5

Answersheets of Quiz 1

- Answerkey and grading scheme on piazza by afternoon.
- ▶ Venue: KR125, Time: 7.45pm onwards.
- ▶ In batches of 25, 10min each batch.

Optional help session today: at 7pm

Problemsheet 5

Answersheets of Quiz 1

- ▶ Answerkey and grading scheme on piazza by afternoon.
- ▶ Venue: KR125, Time: 7.45pm onwards.
- ▶ In batches of 25, 10min each batch.
- ▶ Exact schedule by Roll No. will be on piazza by afternoon.
- ▶ Please see that and come only on your slot.

Summary

Week 01 and 02: Proofs and Reasoning

- ▶ Propositions, Predicates, Quantifiers
- ▶ Theorems and Types of Proofs
- ▶ Induction and variants

Summary

Week 01 and 02: Proofs and Reasoning

- ▶ Propositions, Predicates, Quantifiers
- ▶ Theorems and Types of Proofs
- ▶ Induction and variants

Week 03 and 04: Basic Structures – Sets and Functions

- ▶ Finite and infinite sets.
- ▶ Using functions to compare sets: focus on bijections.
- ▶ Countable, countably infinite and uncountable sets.
- Cantor's diagonalization argument

Summary

Week 01 and 02: Proofs and Reasoning

- ▶ Propositions, Predicates, Quantifiers
- ▶ Theorems and Types of Proofs
- ▶ Induction and variants

Week 03 and 04: Basic Structures – Sets and Functions

- ▶ Finite and infinite sets.
- ▶ Using functions to compare sets: focus on bijections.
- ▶ Countable, countably infinite and uncountable sets.
- Cantor's diagonalization argument

Week 05 and 06: Basic Structures – Relations

- ▶ Equivalence relations and partitions of a set
- ▶ Partially ordered sets (posets), chains and anti-chains
- ▶ Applications: to task scheduling

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- ▶ a chain if every pair of elements in B is related by \leq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- ▶ a chain if every pair of elements in B is related by \leq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).
- ▶ Thus, \leq is a total order on *B*.

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- ▶ a chain if every pair of elements in B is related by \leq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).
- ▶ Thus, \leq is a total order on *B*.

Definition

Let (S, \preceq) be a poset. A subset $A \subseteq S$ is called

▶ an anti-chain if no two distinct elements of A are related to each other under \leq .

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- ▶ a chain if every pair of elements in B is related by \leq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).
- ▶ Thus, \leq is a total order on *B*.

Definition

Let (S, \preceq) be a poset. A subset $A \subseteq S$ is called

- ▶ an anti-chain if no two distinct elements of A are related to each other under \leq .
- ▶ That is, $\forall a, b \in A, a \neq b$, we have neither $a \leq b$ nor $b \leq a$.

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

Dependencies give rise to a poset

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

Dependencies give rise to a poset

- But for cooking you need a total order, that is consistent with the po.
- ▶ This is called a linearization or a topological sorting.

Topological sorting

Definition A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Topological sorting

Definition A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Theorem

Every finite poset has a topological sort.

Topological sorting

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Theorem

Every finite poset has a topological sort.

Proof Sketch

- ▶ Use the following lemma:
 - Every finite non-empty poset has at least one minimal element (x is minimal if $Ay, y \leq x$).
- Construct the linearization, one minimal element at a time, to complete the proof.

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

Assume that every task takes 1 time unit.

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

- ► Assume that every task takes 1 time unit.
- ▶ Clearly, we still need at least 5 time units.

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

- Assume that every task takes 1 time unit.
- ▶ Clearly, we still need at least 5 time units.
- That is, the size of the largest/longest chain (size of chain = no. of elements in it).

Parallel task scheduling

For any poset, there is a legal parallel schedule that runs in t steps, where t is the size of the longest chain.

Parallel task scheduling

For any poset, there is a legal parallel schedule that runs in t steps, where t is the size of the longest chain.

We will in fact prove:

Theorem

For a finite poset (S, \preceq) with size of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \preceq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Parallel task scheduling

For any poset, there is a legal parallel schedule that runs in t steps, where t is the size of the longest chain.

We will in fact prove:

Theorem

For a finite poset (S, \preceq) with size of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \preceq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Assuming this theorem,

- Observe that we can schedule all of S_i at time *i* (since we know that all previous tasks were done earlier!).
- ▶ Thus, each S_i is an anti-chain.
- ▶ This solves the parallel task scheduling problem.

Theorem

For a finite poset (S, \preceq) with size of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \preceq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Theorem

For a finite poset (S, \preceq) with size of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \preceq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the size of the largest chain ending at a.

Theorem

For a finite poset (S, \preceq) with size of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \preceq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the size of the largest chain ending at a. Now proof by contradiction:

Theorem

For a finite poset (S, \preceq) with size of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \preceq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the size of the largest chain ending at a. Now proof by contradiction:

Suppose $\exists i, a \in S_i, b \leq a, b \neq a$ but $b \notin S_1 \cup \ldots \cup S_{i-1}$.

Theorem

For a finite poset (S, \preceq) with size of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \preceq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the size of the largest chain ending at a. Now proof by contradiction:

- Suppose $\exists i, a \in S_i, b \leq a, b \neq a$ but $b \notin S_1 \cup \ldots \cup S_{i-1}$.
- ▶ By define of S_i , \exists chain of size at least *i* ending at *b*.

Theorem

For a finite poset (S, \preceq) with size of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \preceq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the size of the largest chain ending at a. Now proof by contradiction:

- ▶ Suppose $\exists i, a \in S_i, b \leq a, b \neq a$ but $b \notin S_1 \cup \ldots \cup S_{i-1}$.
- ▶ By define of S_i , \exists chain of size at least *i* ending at *b*.
- ▶ But now, $b \leq a, b \neq a$ implies we can extend the chain to chain of size $\geq i + 1$, ending at a.
- But then a cannot be in S_i . Contradiction.

Consequences for chains and anti-chains

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \leq) is of size t, then S can be partitioned into t anti-chains.

Consequences for chains and anti-chains

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \leq) is of size t, then S can be partitioned into t anti-chains.

Exercise: Apply this on the poset $(\mathcal{P}(S), \subseteq)$, where $S = \{1, 2, 3\}$. What does it imply for this poset?

Consequences for chains and anti-chains

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the largest chain in a poset (S, \leq) is of size t, then S can be partitioned into t anti-chains.

Exercise: Apply this on the poset $(\mathcal{P}(S), \subseteq)$, where $S = \{1, 2, 3\}$. What does it imply for this poset?

Another corollary (Dilworth's Lemma)

For all t > 0, any poset with n elements must have

- \blacktriangleright either a chain of size greater than t
- or an antichain with at least $\frac{n}{t}$ elements.

Exercise: Prove it!