
CS 105: Department Introductory Course
on Discrete Structures

Instructor : S. Akshay

Sep 02, 2024

Lecture 15 – Basic structures: chains and
anti-chains
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Logistics

Optional help session today: at 7pm

▶ Problemsheet 5

Answersheets of Quiz 1

▶ Answerkey and grading scheme on piazza by afternoon.

▶ Venue: KR125, Time: 7.45pm onwards.

▶ In batches of 25, 10min each batch.

▶ Exact schedule by Roll No. will be on piazza by afternoon.

▶ Please see that and come only on your slot.
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Summary

Week 01 and 02: Proofs and Reasoning

▶ Propositions, Predicates, Quantifiers

▶ Theorems and Types of Proofs

▶ Induction and variants

Week 03 and 04: Basic Structures – Sets and Functions

▶ Finite and infinite sets.

▶ Using functions to compare sets: focus on bijections.

▶ Countable, countably infinite and uncountable sets.

▶ Cantor’s diagonalization argument

Week 05 and 06: Basic Structures – Relations

▶ Equivalence relations and partitions of a set

▶ Partially ordered sets (posets), chains and anti-chains

▶ Applications: to task scheduling
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Chains and Anti-chains

Definition
Let (S,⪯) be a poset. A subset B ⊆ S is called

▶ a chain if every pair of elements in B is related by ⪯.

▶ That is, ∀a, b ∈ B, we have a ⪯ b or b ⪯ a (or both).

▶ Thus, ⪯ is a total order on B.

Definition
Let (S,⪯) be a poset. A subset A ⊆ S is called

▶ an anti-chain if no two distinct elements of A are related to
each other under ⪯.

▶ That is, ∀a, b ∈ A, a ̸= b, we have neither a ⪯ b nor b ⪯ a.
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Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

boil egg cut veg heat oil clean/cut chkn steam rice

make garnish

add spices/saute

saute/cook

mix

arrange/serve

▶ Dependencies give rise to a poset

▶ But for cooking you need a total order, that is consistent
with the po.

▶ This is called a linearization or a topological sorting.
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Topological sorting

Definition
A topological sort or a linearization of a poset (S,⪯) is a poset
(S,⪯t) with a total order ⪯t such that x ⪯ y implies x ⪯t y.

Theorem
Every finite poset has a topological sort.

Proof Sketch

▶ Use the following lemma:
▶ Every finite non-empty poset has at least one minimal

element (x is minimal if ̸ ∃y, y ⪯ x).

▶ Construct the linearization, one minimal element at a time,
to complete the proof.
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Parallel Task Scheduling and chains

Coming back to our example,

▶ What if there are many cooks, i.e., parallel processors?

▶ How do we schedule the tasks to minimize time used?

boil egg cut veg heat oil clean/cut chkn steam rice

make garnish

add spices/saute

saute/cook

mix

arrange/serve

▶ Assume that every task takes 1 time unit.

▶ Clearly, we still need at least 5 time units.

▶ That is, the size of the largest/longest chain (size of chain
= no. of elements in it).
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Parallel task scheduling

For any poset, there is a legal parallel schedule that runs in
t steps, where t is the size of the longest chain.

We will in fact prove:

Theorem
For a finite poset (S,⪯) with size of longest chain = t, we can
partition S into t subsets S1, . . . , St such that ∀i ∈ {1, . . . , t},
∀a ∈ Si, if b ⪯ a, b ̸= a then b ∈ S1 ∪ . . . ∪ Si−1.

Assuming this theorem,

▶ Observe that we can schedule all of Si at time i (since we
know that all previous tasks were done earlier!).

▶ Thus, each Si is an anti-chain.

▶ This solves the parallel task scheduling problem.
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Parallel task scheduling and chains

Theorem
For a finite poset (S,⪯) with size of longest chain = t, we can
partition S into t subsets S1, . . . , St such that ∀i ∈ {1, . . . , t},
∀a ∈ Si, if b ⪯ a, b ̸= a then b ∈ S1 ∪ . . . ∪ Si−1.

Proof: Put each a ∈ S in Si such that i is the size of the largest
chain ending at a. Now proof by contradiction:

▶ Suppose ∃i, a ∈ Si, b ⪯ a, b ̸= a but b ̸∈ S1 ∪ . . . ∪ Si−1.

▶ By defn of Si, ∃ chain of size at least i ending at b.

▶ But now, b ⪯ a, b ̸= a implies we can extend the chain to
chain of size ≥ i+ 1, ending at a.

▶ But then a cannot be in Si. Contradiction.
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Consequences for chains and anti-chains

Since each Si was an anti-chain, a celebrated result follows...

Corollary (Mirsky’s theorem, 1971)

If the largest chain in a poset (S,≤) is of size t, then S can be
partitioned into t anti-chains.
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partitioned into t anti-chains.

Exercise: Apply this on the poset (P(S),⊆), where
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Another corollary (Dilworth’s Lemma)

For all t > 0, any poset with n elements must have

▶ either a chain of size greater than t

▶ or an antichain with at least n
t elements.

Exercise: Prove it!
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