
CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Sept 03, 2024
Lecture 16 – a little bit on lattices and on to Counting

1



Recap: Partial order relations

Last two classes we saw
▶ Partial orders: definition and examples

▶ Posets, chains and anti-chains

▶ Graphical representation as Directed Acyclic Graphs

▶ Topological sorting (application to task scheduling)

▶ Mirsky’s theorem (application to parallel task scheduling)
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Minimal and maximal elements

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Poset P1 = (S1,⊆)

where S1 = P({1, 2, 3})

.

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

Poset P2 = (S2,⊆)

where S2 = P({1, 2, 3}) \ {∅, {1, 2, 3}}

Let (S,⪯) be a poset.

▶ a ∈ S is minimal in S if ∀b ∈ S, b ⪯ a =⇒ b = a

▶ a ∈ S is maximal in S if ∀b ∈ S, a ⪯ b =⇒ a = b.

▶ a ∈ S is least/minimum element of S if ∀b ∈ S, a ⪯ b

▶ a ∈ S is greatest/maximum element of S if ∀b ∈ S, b ⪯ a.

Examples: ∅ is a minimal and the minimum element in P1,
{1}, {2}, {3} are all minimal elements in P2, but P2 does not have any
minimum element.

Exercise: What are the maximal/maximum elements in P1, P2?
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Least upper bounds and greatest lower bounds

Let (S,⪯) be a poset and A ⊆ S.

▶ u ∈ S is called an upper bound of A iff a ⪯ u for all
a ∈ A.
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Least upper bounds and greatest lower bounds

Let (S,⪯) be a poset and A ⊆ S.

▶ u ∈ S (resp. l ∈ S) is called an upper bound (resp. lower
bound) of A iff a ⪯ u (resp. l ⪯ a) for all a ∈ A.
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∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Poset P1 = (S1,⊆)

▶ Let A = {{1}, {2}}. Then {1, 2}, {1, 2, 3} are upper bounds of A
in P1 and {1, 2} is the lub of A.
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Least upper bounds and greatest lower bounds

Let (S,⪯) be a poset and A ⊆ S.

▶ u ∈ S (resp. l ∈ S) is called an upper bound (resp. lower
bound) of A iff a ⪯ u (resp. l ⪯ a) for all a ∈ A.

▶ u ∈ S is the least upper bound (lub) of A if it is an upper
bound of A and is less than every other upper bound.

▶ l ∈ S is the greatest lower bound (glb) of A if it is an lower
bound of A and is greater than every other lower bound.

.

X Y

Z W

Poset P3 = (S3,�)

▶ Consider P3 = (S3,⪯) where S3 = {X,Y, Z,W} and the ⪯ is as
given by the arrows. Let B = {X,Y }. Then Z,W are both
upper bounds of B in P3, but B has no lub in P3.
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Least upper bounds and greatest lower bounds

Let (S,⪯) be a poset and A ⊆ S.

▶ u ∈ S (resp. l ∈ S) is called an upper bound (resp. lower
bound) of A iff a ⪯ u (resp. l ⪯ a) for all a ∈ A.

▶ u ∈ S is the least upper bound (lub) of A if it is an upper
bound of A and is less than every other upper bound.

▶ l ∈ S is the greatest lower bound (glb) of A if it is an lower
bound of A and is greater than every other lower bound.

Some Obervations (Exercise: Prove it!)

▶ The lub/glb of a subset A in S, if it exists, is unique.

▶ If the lub/glb of A ⊆ S belongs to A, then it is the
greatest/least element of A.
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Lattices

Definition
▶ A lattice is a poset in which every pair of elements has both

a lub and a glb (in the set), i.e., ∀x, y ∈ S, there exists
l, u ∈ S such that l is the glb and u is the lub of {x, y}.

▶ (P(S),⊆) is a lattice.

▶ What about ({2, 4, 5, 10, 12, 20, 25}, |) ?

Applications of Lattices

▶ Models of information flow – think security clearence.

▶ Finite lattices have a strong link with Boolean Algebra

▶ Several other applications in many domains of mathematics
and CS, including formal semantics of programming
languages, program verification.
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Summary till now

Course Outline

1. Proofs and reasoning

2. Basic discrete structures

3. Counting and combinatorics

4. Introduction to graph theory
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Pop Quiz

Fill the feedback form at

https://forms.gle/MpASeXVG9YqChonZ6
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Next chapter: Counting and Combinatorics

Topics to be covered

▶ Basics of counting

▶ Subsets, partitions, Permutations and combinations

▶ Pigeonhole Principle and its extensions

▶ Recurrence relations and generating functions
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Introduction to combinatorics

Does it really need an introduction

▶ Enumerative combinatorics: counting
combinatorial/discrete objects e.g., sets, numbers,
structures...

▶ Existential combinatorics: show that there exist some
combinatorial “configurations”.

▶ Constructive combinatorics: construct interesting
configurations...
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