CS 105: DIC on Discrete Structures

Instructor : S. Akshay

 $\begin{array}{c} {\rm Sept} \ 03, \ 2024 \\ {\rm Lecture} \ 16-a \ little \ bit \ on \ lattices \ and \ on \ to \ Counting \end{array}$

Recap: Partial order relations

Last two classes we saw

- ▶ Partial orders: definition and examples
- ▶ Posets, chains and anti-chains
- ▶ Graphical representation as Directed Acyclic Graphs
- ▶ Topological sorting (application to task scheduling)
- ▶ Mirsky's theorem (application to parallel task scheduling)

Poset $P_1 = (S_1, \subseteq)$ where $S_1 = \mathcal{P}(\{1, 2, 3\})$

Poset $P_2 = (S_2, \subseteq)$ where $S_2 = \mathcal{P}(\{1, 2, 3\}) \setminus \{\emptyset, \{1, 2, 3\}\}$

Poset $P_1 = (S_1, \subseteq)$ where $S_1 = \mathcal{P}(\{1, 2, 3\})$

Poset $P_2 = (S_2, \subseteq)$ where $S_2 = \mathcal{P}(\{1, 2, 3\}) \setminus \{\emptyset, \{1, 2, 3\}\}$

Let (S, \preceq) be a poset.

- ▶ $a \in S$ is minimal in S if $\forall b \in S, b \leq a \implies b = a$
- $a \in S$ is maximal in S if $\forall b \in S, a \leq b \implies a = b$.

Poset $P_1 = (S_1, \subseteq)$ where $S_1 = \mathcal{P}(\{1, 2, 3\})$

 $\begin{array}{l} \text{Poset} \ P_2 = (S_2, \subseteq) \\ \text{where} \ S_2 = \mathcal{P}(\{1,2,3\}) \setminus \{ \emptyset, \{1,2,3\} \} \end{array} \\ \end{array} \\$

Let (S, \preceq) be a poset.

- ▶ $a \in S$ is minimal in S if $\forall b \in S, b \leq a \implies b = a$
- $a \in S$ is maximal in S if $\forall b \in S, a \leq b \implies a = b$.
- ▶ $a \in S$ is least/minimum element of S if $\forall b \in S, a \leq b$
- ▶ $a \in S$ is greatest/maximum element of S if $\forall b \in S, b \leq a$.

Poset $P_1 = (S_1, \subseteq)$

Poset $P_2 = (S_2, \subseteq)$

Let (S, \preceq) be a poset.

- ▶ $a \in S$ is minimal in S if $\forall b \in S, b \leq a \implies b = a$
- $a \in S$ is maximal in S if $\forall b \in S, a \leq b \implies a = b$.
- ▶ $a \in S$ is least/minimum element of S if $\forall b \in S, a \leq b$
- ▶ $a \in S$ is greatest/maximum element of S if $\forall b \in S, b \leq a$.

Examples: \emptyset is a minimal and the minimum element in P_1 , $\{1\}, \{2\}, \{3\}$ are all minimal elements in P_2 , but P_2 does not have any minimum element.

Poset $P_1 = (S_1, \subseteq)$

Poset $P_2 = (S_2, \subseteq)$

Let (S, \preceq) be a poset.

- ▶ $a \in S$ is minimal in S if $\forall b \in S, b \leq a \implies b = a$
- ▶ $a \in S$ is maximal in S if $\forall b \in S, a \leq b \implies a = b$.
- ▶ $a \in S$ is least/minimum element of S if $\forall b \in S, a \preceq b$
- ▶ $a \in S$ is greatest/maximum element of S if $\forall b \in S, b \leq a$.

Examples: \emptyset is a minimal and the minimum element in P_1 , $\{1\}, \{2\}, \{3\}$ are all minimal elements in P_2 , but P_2 does not have any minimum element.

Exercise: What are the maximal/maximum elements in P_1, P_2 ?

Let (S, \preceq) be a poset and $A \subseteq S$.

• $u \in S$ is called an upper bound of A iff $a \leq u$ for all $a \in A$.

- $u \in S$ is called an upper bound of A iff $a \preceq u$ for all $a \in A$.
- ▶ $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- ▶ $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- ▶ $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- ▶ $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

• Let $A = \{\{1\}, \{2\}\}$. Then $\{1, 2\}, \{1, 2, 3\}$ are upper bounds of A in P_1 and $\{1, 2\}$ is the lub of A.

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- ▶ $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Poset $P_3 = (S_3, \preceq)$

▶ Consider $P_3 = (S_3, \preceq)$ where $S_3 = \{X, Y, Z, W\}$ and the \preceq is as given by the arrows. Let $B = \{X, Y\}$. Then Z, W are both upper bounds of B in P_3 , but B has no lub in P_3 .

Let (S, \preceq) be a poset and $A \subseteq S$.

- ▶ $u \in S$ (resp. $l \in S$) is called an upper bound (resp. lower bound) of A iff $a \preceq u$ (resp. $l \preceq a$) for all $a \in A$.
- ▶ $u \in S$ is the least upper bound (lub) of A if it is an upper bound of A and is less than every other upper bound.
- ▶ $l \in S$ is the greatest lower bound (glb) of A if it is an lower bound of A and is greater than every other lower bound.

Some Obervations (Exercise: Prove it!)

- The lub/glb of a subset A in S, if it exists, is unique.
- ▶ If the lub/glb of $A \subseteq S$ belongs to A, then it is the greatest/least element of A.

Definition

A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., ∀x, y ∈ S, there exists l, u ∈ S such that l is the glb and u is the lub of {x, y}.

Definition

A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., ∀x, y ∈ S, there exists l, u ∈ S such that l is the glb and u is the lub of {x, y}.

▶
$$(\mathcal{P}(S), \subseteq)$$
 is a lattice.

• What about $(\{2, 4, 5, 10, 12, 20, 25\}, |)$?

Definition

▶ A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., $\forall x, y \in S$, there exists $l, u \in S$ such that l is the glb and u is the lub of $\{x, y\}$.

•
$$(\mathcal{P}(S), \subseteq)$$
 is a lattice.

• What about $(\{2, 4, 5, 10, 12, 20, 25\}, |)$?

Applications of Lattices

▶ Models of information flow –

Definition

A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., ∀x, y ∈ S, there exists l, u ∈ S such that l is the glb and u is the lub of {x, y}.

•
$$(\mathcal{P}(S), \subseteq)$$
 is a lattice.

• What about $(\{2, 4, 5, 10, 12, 20, 25\}, |)$?

Applications of Lattices

▶ Models of information flow – think security clearence.

Definition

A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., ∀x, y ∈ S, there exists l, u ∈ S such that l is the glb and u is the lub of {x, y}.

•
$$(\mathcal{P}(S), \subseteq)$$
 is a lattice.

• What about $(\{2, 4, 5, 10, 12, 20, 25\}, |)$?

Applications of Lattices

- ▶ Models of information flow think security clearence.
- ▶ Finite lattices have a strong link with Boolean Algebra

Definition

A lattice is a poset in which every pair of elements has both a lub and a glb (in the set), i.e., ∀x, y ∈ S, there exists l, u ∈ S such that l is the glb and u is the lub of {x, y}.

•
$$(\mathcal{P}(S), \subseteq)$$
 is a lattice.

• What about $(\{2, 4, 5, 10, 12, 20, 25\}, |)$?

Applications of Lattices

- ▶ Models of information flow think security clearence.
- ▶ Finite lattices have a strong link with Boolean Algebra
- Several other applications in many domains of mathematics and CS, including formal semantics of programming languages, program verification.

Course Outline

- 1. Proofs and reasoning
- 2. Basic discrete structures
- 3. Counting and combinatorics
- 4. Introduction to graph theory

Course Outline

1. Proofs and reasoning

- Propositions, predicates
- Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.
- 2. Basic discrete structures
- 3. Counting and combinatorics
- 4. Introduction to graph theory

Course Outline

1. Proofs and reasoning

- Propositions, predicates
- Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.

2. Basic discrete structures

- ▶ (finite and infinite) sets
- ▶ Functions: injections, surjections, bijections
- ▶ Relations: equivalence relations, partial orders, lattices
- Some applications
 - ▶ Functions: To compare infinite sets
 - Using diagonalization to prove impossibility results.
 - ▶ Equivalences: Defining "like" partitions.
 - ▶ Posets: Topological sort, (parallel) task scheduling, lattices
- 3. Counting and combinatorics
- 4. Introduction to graph theory

Course Outline

1. Proofs and reasoning

- Propositions, predicates
- Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.

2. Basic discrete structures

- ▶ (finite and infinite) sets
- ▶ Functions: injections, surjections, bijections
- ▶ Relations: equivalence relations, partial orders, lattices
- Some applications

3. Counting and combinatorics

4. Introduction to graph theory

Pop Quiz

Pop Quiz

Fill the feedback form at

https://forms.gle/MpASeXVG9YqChonZ6

Next chapter: Counting and Combinatorics

Topics to be covered

- Basics of counting
- ▶ Subsets, partitions, Permutations and combinations
- ▶ Pigeonhole Principle and its extensions
- ▶ Recurrence relations and generating functions

Introduction to combinatorics

Does it really need an introduction

Introduction to combinatorics

Does it really need an introduction

- Enumerative combinatorics: counting combinatorial/discrete objects e.g., sets, numbers, structures...
- Existential combinatorics: show that there exist some combinatorial "configurations".
- Constructive combinatorics: construct interesting configurations...