CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Sept 05, 2024 Lecture 17 – Counting

Course Outline

- 1. Proofs and reasoning
- 2. Basic discrete structures
- 3. Counting and combinatorics
- 4. Introduction to graph theory

Course Outline

1. Proofs and reasoning

- Propositions, predicates
- Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.
- 2. Basic discrete structures
- 3. Counting and combinatorics
- 4. Introduction to graph theory

Course Outline

1. Proofs and reasoning

- Propositions, predicates
- Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.

2. Basic discrete structures

- ▶ (finite and infinite) sets
- ▶ Functions: injections, surjections, bijections
- ▶ Relations: equivalence relations, partial orders, lattices
- Some applications
 - ▶ Functions: To compare infinite sets
 - Using diagonalization to prove impossibility results.
 - ▶ Equivalences: Defining "like" partitions.
 - ▶ Posets: Topological sort, (parallel) task scheduling, lattices
- 3. Counting and combinatorics
- 4. Introduction to graph theory

Course Outline

1. Proofs and reasoning

- Propositions, predicates
- Proofs and proof techniques: contradiction, contrapositive, (strong) induction, well-ordering principle, diagonalization.

2. Basic discrete structures

- ▶ (finite and infinite) sets
- ▶ Functions: injections, surjections, bijections
- ▶ Relations: equivalence relations, partial orders, lattices
- Some applications

3. Counting and combinatorics

4. Introduction to graph theory

Next chapter: Counting and Combinatorics

Topics to be covered

- Basics of counting
- ▶ Subsets, partitions, Permutations and combinations
- ▶ Recurrence relations and generating functions
- ▶ Pigeonhole Principle and its extensions

Introduction to combinatorics

Various aspects of combinatorics

Introduction to combinatorics

Various aspects of combinatorics

- Enumerative combinatorics: counting combinatorial/discrete objects e.g., sets, numbers, structures...
- Existential combinatorics: show that there exist some combinatorial "configurations".
- Constructive combinatorics: construct interesting configurations...

• How many reflexive relations are there on a set A of size n?

- How many reflexive relations are there on a set A of size n?
 - Reflexive relations are ordered pairs of which there are n^2 .
 - Of these, all n pairs of (a, a) have be present.
 - Of the remaining, we can choose any of them to be in or out.
 - there are $n^2 n$ of them, so $2^{n^2 n}$ of them.
 - ▶ We used the so-called "product principle"...

• How many reflexive relations are there on a set A of size n?

- Reflexive relations are ordered pairs of which there are n^2 .
- Of these, all n pairs of (a, a) have be present.
- Of the remaining, we can choose any of them to be in or out.
- there are $n^2 n$ of them, so $2^{n^2 n}$ of them.
- ▶ We used the so-called "product principle"...

The product principle

If there are n_1 ways of doing something and n_2 ways of doing another thing, then there are $n_1 \cdot n_2$ ways of performing both actions.

• How many reflexive relations are there on a set A of size n?

- How many reflexive relations are there on a set A of size n?
- How many functions are there from a set of size n to itself?

- How many reflexive relations are there on a set A of size n?
- How many functions are there from a set of size n to itself?
- How many subsets does a set A of n elements have?

- How many reflexive relations are there on a set A of size n?
- How many functions are there from a set of size n to itself?
- How many subsets does a set A of n elements have?
 - Product principle: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (*n*-times).
 - Bijection: between $\mathcal{P}(A)$ and *n*-length sequences over $\{0, 1\}$ (characteristic vector).
 - ▶ Induction: Since we already know the answer!
 - Recurrence: $F(n) = 2 \cdot F(n-1), F(0) = 1$. solve it?
 - Sum principle: Subsets of size 0 +subsets of size $1 + \ldots +$ subsets of size n = Total number of subsets.

- How many reflexive relations are there on a set A of size n?
- How many functions are there from a set of size n to itself?
- How many subsets does a set A of n elements have?
 - Product principle: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (*n*-times).
 - ▶ Bijection: between $\mathcal{P}(A)$ and *n*-length sequences over $\{0, 1\}$ (characteristic vector).
 - ▶ Induction: Since we already know the answer!
 - Recurrence: $F(n) = 2 \cdot F(n-1), F(0) = 1$. solve it?
 - Sum principle: Subsets of size 0 +subsets of size $1 + \ldots +$ subsets of size n = Total number of subsets.

Sum Principle

If something can be done in n_1 or n_2 ways such that none of the n_1 ways is the same as any of the n_2 ways, then the total number of ways to do this is $n_1 + n_2$.

- How many reflexive relations are there on a set A of size n?
- How many functions are there from a set of size n to itself?
- How many subsets does a set A of n elements have?
 - Product principle: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (*n*-times).
 - ▶ Bijection: between $\mathcal{P}(A)$ and *n*-length sequences over $\{0, 1\}$ (characteristic vector).
 - ▶ Induction: Since we already know the answer!
 - Recurrence: $F(n) = 2 \cdot F(n-1), F(0) = 1$. solve it?
 - Sum principle: Subsets of size 0 +subsets of size $1 + \ldots +$ subsets of size n = Total number of subsets.
- But, how many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

- How many reflexive relations are there on a set A of size n?
- How many functions are there from a set of size n to itself?
- How many subsets does a set A of n elements have?
 Product principle: two choices for each element, hence 2 · 2 · · · 2 · 2 (n-times).
 - ▶ Bijection: between $\mathcal{P}(A)$ and *n*-length sequences over $\{0, 1\}$ (characteristic vector).
 - ▶ Induction: Since we already know the answer!
 - Recurrence: $F(n) = 2 \cdot F(n-1), F(0) = 1$. solve it?
 - Sum principle: Subsets of size 0 +subsets of size $1 + \ldots +$ subsets of size n = Total number of subsets.
- ▶ But, how many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.
- We all know(?) that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Prove it!

Binomial Coefficients. Let n, k be integers s.t., $n \ge k \ge 0$. How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is as follows:

Binomial Coefficients. Let n, k be integers s.t., $n \ge k \ge 0$. How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is as follows: Let us count the number of "ordered" subsets of size k.

Binomial Coefficients. Let n, k be integers s.t., $n \ge k \ge 0$. How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is as follows: Let us count the number of "ordered" subsets of size k.

▶ No. of ordered subsets of size $k = n \cdot (n-1) \cdots (n-k+1)$.

Binomial Coefficients. Let n, k be integers s.t., $n \ge k \ge 0$. How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is as follows: Let us count the number of "ordered" subsets of size k.

- ▶ No. of ordered subsets of size $k = n \cdot (n-1) \cdots (n-k+1)$.
- ▶ No. of ordered subsets of size $k = (no. of unordered subsets) \times (no. of ways to order them) = <math>\binom{n}{k} \times k!$.

Binomial Coefficients. Let n, k be integers s.t., $n \ge k \ge 0$. How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is as follows: Let us count the number of "ordered" subsets of size k.

- ▶ No. of ordered subsets of size $k = n \cdot (n-1) \cdots (n-k+1)$.
- ▶ No. of ordered subsets of size $k = (no. of unordered subsets) \times (no. of ways to order them) = <math>\binom{n}{k} \times k!$.
- Equate them! Principle of double counting.
 - if you can't count something, count something else and count it twice over!

Binomial Coefficients. Let n, k be integers s.t., $n \ge k \ge 0$. How many subsets of size k does a set of n elements have? This number, denoted $\binom{n}{k}$, is called a binomial coefficient.

One proof of $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is as follows: Let us count the number of "ordered" subsets of size k.

- ▶ No. of ordered subsets of size $k = n \cdot (n-1) \cdots (n-k+1)$.
- ▶ No. of ordered subsets of size $k = (no. of unordered subsets) \times (no. of ways to order them) = <math>\binom{n}{k} \times k!$.
- Equate them! Principle of double counting.

Permutations and combinations

- No. of k-size subsets of set of size n = No. of k-combinations of a set of n (distinct) elements = ⁿ_k.
- No. of k-size ordered subsets of set of size n = No. of k-permutations of a set of n (distinct) elements.

Simple examples to illustrate "double counting"

Prove the following identities (by only using double counting!). For all $n, k \in \mathbb{N}$ with $0 \le k \le n$,

1.
$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

2.
$$\binom{n}{k} = \binom{n}{n-k}.$$

3.
$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

4.
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Simple examples to illustrate "double counting"

Prove the following identities (by only using double counting!). For all $n, k \in \mathbb{N}$ with $0 \le k \le n$,

1.
$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

2.
$$\binom{n}{k} = \binom{n}{n-k}.$$

3.
$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

4.
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

The latter two are in fact recursive definitions for $\binom{n}{k}$. What are the boundary conditions?

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

What will you count here?

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

- 1. Define a relation R: iRj if i and j shook hands.
- 2. Is this relation symmetric (trans/refl.)? Draw its graph.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

- 1. Define a relation R: iRj if i and j shook hands.
- 2. Is this relation symmetric (trans/refl.)? Draw its graph.
- 3. Let m_i be the number of times *i* shakes hands.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

- 1. Define a relation R: iRj if i and j shook hands.
- 2. Is this relation symmetric (trans/refl.)? Draw its graph.
- 3. Let m_i be the number of times *i* shakes hands. i.e., m_i is the number of directed edges going out from *i*.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

- 1. Define a relation R: iRj if i and j shook hands.
- 2. Is this relation symmetric (trans/refl.)? Draw its graph.
- 3. Let m_i be the number of times *i* shakes hands. i.e., m_i is the number of directed edges going out from *i*.
- 4. Therefore, Total no. of directed edges = $\sum_{i} m_i$.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

- 1. Define a relation R: iRj if i and j shook hands.
- 2. Is this relation symmetric (trans/refl.)? Draw its graph.
- 3. Let m_i be the number of times *i* shakes hands. i.e., m_i is the number of directed edges going out from *i*.
- 4. Therefore, Total no. of directed edges = $\sum_{i} m_i$.
- 5. But now, let X be the total number of handshakes. Clearly this is an integer.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

- 1. Define a relation R: iRj if i and j shook hands.
- 2. Is this relation symmetric (trans/refl.)? Draw its graph.
- 3. Let m_i be the number of times *i* shakes hands. i.e., m_i is the number of directed edges going out from *i*.
- 4. Therefore, Total no. of directed edges = $\sum_{i} m_i$.
- 5. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges = $2 \cdot X$.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

- 1. Define a relation R: iRj if i and j shook hands.
- 2. Is this relation symmetric (trans/refl.)? Draw its graph.
- 3. Let m_i be the number of times *i* shakes hands. i.e., m_i is the number of directed edges going out from *i*.
- 4. Therefore, Total no. of directed edges = $\sum_{i} m_i$.
- 5. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges = $2 \cdot X$.

6. i.e.,
$$2 \cdot X = \sum_{i=1}^{n} m_i$$

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

- 1. Define a relation R: iRj if i and j shook hands.
- 2. Is this relation symmetric (trans/refl.)? Draw its graph.
- 3. Let m_i be the number of times *i* shakes hands. i.e., m_i is the number of directed edges going out from *i*.
- 4. Therefore, Total no. of directed edges = $\sum_{i} m_i$.
- 5. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges $= 2 \cdot X$.

6. i.e.,
$$2 \cdot X = \sum_{i=1}^{n} m_i = \sum_{\{i \mid m_i \text{ is odd}\}} m_i + \sum_{\{i \mid m_i \text{ is even}\}} m_i$$

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

- 1. Define a relation R: iRj if i and j shook hands.
- 2. Is this relation symmetric (trans/refl.)? Draw its graph.
- 3. Let m_i be the number of times *i* shakes hands. i.e., m_i is the number of directed edges going out from *i*.
- 4. Therefore, Total no. of directed edges = $\sum_{i} m_i$.
- 5. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges $= 2 \cdot X$.
- 6. i.e., $2 \cdot X = \sum_{i=1}^{n} m_i = \sum_{\{i \mid m_i \text{ is odd}\}} m_i + \sum_{\{i \mid m_i \text{ is even}\}} m_i$
- 7. $\sum_{\{i|m_i \text{ is even}\}} m_i$ is even, as sum of even numbers is even.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

- 1. Define a relation R: iRj if i and j shook hands.
- 2. Is this relation symmetric (trans/refl.)? Draw its graph.
- 3. Let m_i be the number of times *i* shakes hands. i.e., m_i is the number of directed edges going out from *i*.
- 4. Therefore, Total no. of directed edges = $\sum_{i} m_i$.
- 5. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges $= 2 \cdot X$.
- 6. i.e., $2 \cdot X = \sum_{i=1}^{n} m_i = \sum_{\{i \mid m_i \text{ is odd}\}} m_i + \sum_{\{i \mid m_i \text{ is even}\}} m_i$
- 7. $\sum_{\{i|m_i \text{ is even}\}} m_i$ is even, as sum of even numbers is even.
- 8. So $\sum_{\{i|m_i \text{ is odd}\}} m_i$ must also be even, but each of these m_i is odd, so $|\{i \mid m_i \text{ is odd}\}|$ has to be even.
- 9. Thus number of i such that m_i is odd is even!