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Summary till now

Course Outline

1. Proofs and reasoning

2. Basic discrete structures

3. Counting and combinatorics

4. Introduction to graph theory
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Next chapter: Counting and Combinatorics

Topics to be covered

▶ Basics of counting

▶ Subsets, partitions, Permutations and combinations

▶ Recurrence relations and generating functions

▶ Pigeonhole Principle and its extensions

3



Introduction to combinatorics

Various aspects of combinatorics

▶ Enumerative combinatorics: counting
combinatorial/discrete objects e.g., sets, numbers,
structures...

▶ Existential combinatorics: show that there exist some
combinatorial “configurations”.

▶ Constructive combinatorics: construct interesting
configurations...
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Simple examples and principles...

▶ How many reflexive relations are there on a set A of size n?
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▶ How many reflexive relations are there on a set A of size n?

▶ Reflexive relations are ordered pairs of which there are n2.
▶ Of these, all n pairs of (a, a) have be present.
▶ Of the remaining, we can choose any of them to be in or out.
▶ there are n2 − n of them, so 2n

2−n of them.
▶ We used the so-called “product principle”...
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▶ How many reflexive relations are there on a set A of size n?

▶ Reflexive relations are ordered pairs of which there are n2.
▶ Of these, all n pairs of (a, a) have be present.
▶ Of the remaining, we can choose any of them to be in or out.
▶ there are n2 − n of them, so 2n

2−n of them.
▶ We used the so-called “product principle”...

The product principle

If there are n1 ways of doing something and n2 ways of doing
another thing, then there are n1 · n2 ways of performing both
actions.
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Simple examples and principles...

▶ How many reflexive relations are there on a set A of size n?

▶ How many functions are there from a set of size n to itself?

▶ How many subsets does a set A of n elements have?
▶ Product principle: two choices for each element, hence

2 · 2 · · · 2 · 2 (n-times).
▶ Bijection: between P(A) and n-length sequences over {0, 1}

(characteristic vector).
▶ Induction: Since we already know the answer!
▶ Recurrence: F (n) = 2 · F (n− 1), F (0) = 1. solve it?
▶ Sum principle: Subsets of size 0 + subsets of size 1 + . . . +

subsets of size n = Total number of subsets.
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▶ Recurrence: F (n) = 2 · F (n− 1), F (0) = 1. solve it?
▶ Sum principle: Subsets of size 0 + subsets of size 1 + . . . +

subsets of size n = Total number of subsets.

Sum Principle

If something can be done in n1 or n2 ways such that none of the
n1 ways is the same as any of the n2 ways, then the total
number of ways to do this is n1 + n2.
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▶ Recurrence: F (n) = 2 · F (n− 1), F (0) = 1. solve it?
▶ Sum principle: Subsets of size 0 + subsets of size 1 + . . . +

subsets of size n = Total number of subsets.

▶ But, how many subsets of size k does a set of n elements
have? This number, denoted

(
n
k

)
, is called a binomial

coefficient.
▶ We all know(?) that

(
n
k

)
= n!

k!(n−k)! . Prove it!
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Permutations and combinations

Binomial Coefficients. Let n, k be integers s.t., n ≥ k ≥ 0.

How many subsets of size k does a set of n elements have? This
number, denoted

(
n
k

)
, is called a binomial coefficient.

One proof of
(
n
k

)
= n!

k!(n−k)! is as follows:
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Permutations and combinations

Binomial Coefficients. Let n, k be integers s.t., n ≥ k ≥ 0.

How many subsets of size k does a set of n elements have? This
number, denoted

(
n
k

)
, is called a binomial coefficient.

One proof of
(
n
k

)
= n!

k!(n−k)! is as follows: Let us count the
number of “ordered” subsets of size k.

▶ No. of ordered subsets of size k= n · (n− 1) · · · (n− k + 1).

▶ No. of ordered subsets of size k = (no. of unordered
subsets)×(no. of ways to order them)=

(
n
k

)
× k!.

▶ Equate them! Principle of double counting.
▶ if you can’t count something, count something else and

count it twice over!
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Permutations and combinations

Binomial Coefficients. Let n, k be integers s.t., n ≥ k ≥ 0.

How many subsets of size k does a set of n elements have? This
number, denoted

(
n
k

)
, is called a binomial coefficient.

One proof of
(
n
k

)
= n!

k!(n−k)! is as follows: Let us count the
number of “ordered” subsets of size k.

▶ No. of ordered subsets of size k= n · (n− 1) · · · (n− k + 1).

▶ No. of ordered subsets of size k = (no. of unordered
subsets)×(no. of ways to order them)=

(
n
k

)
× k!.

▶ Equate them! Principle of double counting.

Permutations and combinations
▶ No. of k-size subsets of set of size n = No. of

k-combinations of a set of n (distinct) elements =
(
n
k

)
.

▶ No. of k-size ordered subsets of set of size n = No. of
k-permutations of a set of n (distinct) elements.
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Simple examples to illustrate “double counting”

Prove the following identities (by only using double
counting!). For all n, k ∈ N with 0 ≤ k ≤ n,

1.

n∑
k=0

(
n

k

)
= 2n.

2.

(
n

k

)
=

(
n

n− k

)
.

3. k

(
n

k

)
= n

(
n− 1

k − 1

)
4.

(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)

The latter two are in fact recursive definitions for
(
n
k

)
. What

are the boundary conditions?
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A more interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake
hands an odd number of times is even.

What will you count here?

Proof in nine steps:

1. Define a relation R: iRj if i and j shook hands.

2. Is this relation symmetric (trans/refl.)? Draw its graph.

3. Let mi be the number of times i shakes hands. i.e., mi is
the number of directed edges going out from i.

4. Therefore, Total no. of directed edges =
∑

imi.

5. But now, let X be the total number of handshakes. Clearly
this is an integer. Total no. of directed edges = 2 ·X.

6. i.e., 2 ·X =
∑n

i=1mi =
∑

{i|mi is odd}mi +
∑

{i|mi is even}mi

7.
∑

{i|mi is even}mi is even, as sum of even numbers is even.

8. So
∑

{i|mi is odd}mi must also be even, but each of these mi

is odd, so |{i | mi is odd}| has to be even.

9. Thus number of i such that mi is odd is even!
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