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Next Chapter: Counting and Combinatorics

Topics to be covered

▶ Basics of counting
▶ Product principle
▶ Sum principle
▶ Bijection principle
▶ Double counting

▶ Subsets, partitions, Permutations and combinations

1. Binomial coefficients and Binomial theorem
2. Pascal’s triangle
3. Permutations and combinations with repetitions

▶ Recurrence relations and generating functions

▶ Pigeonhole Principle and its extensions
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Recall: interesting example with double counting

Handshake Lemma

At a meeting with n people, the number of people who shake
hands an odd number of times is even.

What will you count here?

Proof in seven steps:

1. Define a relation R: iRj if i and j shook hands.

Is this relation symmetric (trans/refl.)? Draw its graph.

2. Let mi be the number of times i shakes hands. i.e., mi is
the number of directed edges going out from i.

3. Therefore, Total no. of directed edges =
∑

imi.

4. But now, let X be the total number of handshakes. Clearly
this is an integer. Total no. of directed edges = 2 ·X.

5. i.e., 2 ·X =
∑n

i=1mi =
∑

{i|mi is odd}mi +
∑

{i|mi is even}mi

6.
∑

{i|mi is even}mi is even, as sum of even numbers is even.

So
∑

{i|mi is odd}mi must also be even, but each of these mi

is odd, so |{i | mi is odd}| has to be even.

7. Thus number of i such that mi is odd is even!
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Binomial theorem

Recall:

n∑
k=0

(
n

k

)
= 2n.

We generalize this...
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Binomial Theorem

Let x, y be variables and n ∈ Z≥0. Then,

(x+ y)n =

n∑
j=0

(
n

j

)
xn−jyj

(H.W-1) Prove this by induction.
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3. No. of subsets of n-element set having even cardinality =
No. of subsets of n-element set having odd cardinality (=?)
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Pascal’s Triangle

A recursive way to compute binomial coefficients(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
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Fun with Pascal’s triangle

Some simple observations. Recall:
(
n+1
k

)
=

(
n

k−1

)
+
(
n
k

)
1. Row i adds up to 2i, Row i+ 1 adds up to twice of row i.

2. Sequence of numbers, squares, cubes?
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. . .+
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Fun with Pascal’s triangle
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