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» Recurrence relations and generating functions

» Pigeonhole Principle and its extensions
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Define a relation R: ¢Rj if ¢ and j shook hands.
Is this relation symmetric (trans/refl.)? Draw its graph.

. Let m; be the number of times 7 shakes hands. i.e., m; is

the number of directed edges going out from .

Therefore, Total no. of directed edges = ), m;.

But now, let X be the total number of handshakes. Clearly
this is an integer. Total no. of directed edges = 2 - X.
ie,2- X =" m;= 2 films is odd} ™ + 2 films is even} M
> {ilms is even} i is even, as sum of even numbers is even.
So > (il is odd} T MUSt also be even, but each of these m;
is odd, so |{i | m; is odd}| has to be even.

Thus number of 7 such that m; is odd is even! ]



Binomial theorem

" /n
Recall: = 2™
eca ,;_O (k)

We gener_alize this...



Binomial theorem

" /n
Recall: =2"
We generalize this...

Binomial Theorem

Let x,y be variables and n € Z=°. Then,

n

(+y)" =) (?) 2"y

J=0

(x+7)=x+y

x+y)’ =@+yE+y) =z + 2y +y°

4y =(z+y)E+y) =2 +3= v+ 3y + v

+n)t =mriE+y)’ =2t ay 657 4 dey 4yt
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Binomial Theorem
Let z,y be variables and n € Z=°. Then,

(z+y)" = ]Zn(:) (?) "Iy

(H.W-1) Prove this by induction.
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we need to pick j ¥'s from n sums and remaining x’s.



Binomial theorem

Binomial Theorem
Let x,y be variables and n € Z=°. Then,

n
@+y)" =) <”> Iyl
=0 N
Proof (Combinatorial):
1. Consider any term z'y’, where i + j = n.
2. To get z'y’ term in

(x+y)(z+y) - (x+y) (n times)

we need to pick j ¥'s from n sums and remaining x’s.

3. Thus, the coefficient of this term = number of ways to get
this term = number of ways to pick j y’s from n elts = (’;)
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Binomial Theorem
Let x,y be variables and n € Z=°. Then,

Corollaries
L (7) = (."5):
2.3 <n> 9 — 3",
j=0 \J

3. No. of subsets of n-element set having even cardinality =
No. of subsets of n-element set having odd cardinality (=7)



Binomial theorem

Binomial Theorem
Let z,y be variables and n € Z=°. Then,

(113 + y)n _ Z (7’L> $n—jyj
=0 ™
Corollaries Ex: Using Binomial Thm show the following
L () = (24)s
2. ) < ,)2? = 3"
=0 N

3. No. of subsets of n-element set having even cardinality =
No. of subsets of n-element set having odd cardinality (=7?)
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Pascal’s Triangle

A recursive way to compute binomial coefficients
n+1\ n o n
k S \k—1 k

() 1
& 1 1
ARG 1 2 1

HEGRHNE 1 3 3 1

ANONONONS) 14 6 4 1

HoOo6ooon 1510 10 51
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1. Row i adds up to 2¢, Row i + 1 adds up to twice of row i.

2. Sequence of numbers, squares, cubes?
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Fun with Pascal’s triancole

i 9 36. 84 125 126. 84 36 9 1
1 10 45 120 200 252 200 120 45 10 1

Some simple observations. Recall: (";') = (,",) + (})
1. Row i adds up to 2, Row i + 1 adds up to twice of row 1.
2. Sequence of numbers, squares, cubes?

3. Hockey stick patterns: (H.W-2)

(") =G+ G2 -+ (7)
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