CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Sept 09, 2024 Lecture 18 – Counting and Combinatorics

Next Chapter: Counting and Combinatorics

Topics to be covered

- ▶ Basics of counting
 - ▶ Product principle
 - Sum principle
 - ▶ Bijection principle
 - ▶ Double counting

Next Chapter: Counting and Combinatorics

Topics to be covered

- ▶ Basics of counting
 - ▶ Product principle
 - Sum principle
 - ▶ Bijection principle
 - ▶ Double counting
- ▶ Subsets, partitions, Permutations and combinations
 - 1. Binomial coefficients and Binomial theorem
 - 2. Pascal's triangle
 - 3. Permutations and combinations with repetitions

Next Chapter: Counting and Combinatorics

Topics to be covered

- ▶ Basics of counting
 - Product principle
 - ► Sum principle
 - ► Bijection principle
 - ▶ Double counting
- ▶ Subsets, partitions, Permutations and combinations
 - 1. Binomial coefficients and Binomial theorem
 - 2. Pascal's triangle
 - 3. Permutations and combinations with repetitions
- ▶ Recurrence relations and generating functions
- ▶ Pigeonhole Principle and its extensions

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

What will you count here?

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in seven steps:

1. Define a relation R: iRj if i and j shook hands. Is this relation symmetric (trans/refl.)? Draw its graph.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in seven steps:

- 1. Define a relation R: iRj if i and j shook hands. Is this relation symmetric (trans/refl.)? Draw its graph.
- 2. Let m_i be the number of times i shakes hands.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in seven steps:

- 1. Define a relation R: iRj if i and j shook hands. Is this relation symmetric (trans/refl.)? Draw its graph.
- 2. Let m_i be the number of times i shakes hands. i.e., m_i is the number of directed edges going out from i.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in seven steps:

- 1. Define a relation R: iRj if i and j shook hands. Is this relation symmetric (trans/refl.)? Draw its graph.
- 2. Let m_i be the number of times i shakes hands. i.e., m_i is the number of directed edges going out from i.
- 3. Therefore, Total no. of directed edges = $\sum_{i} m_{i}$.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in seven steps:

- 1. Define a relation R: iRj if i and j shook hands. Is this relation symmetric (trans/refl.)? Draw its graph.
- 2. Let m_i be the number of times i shakes hands. i.e., m_i is the number of directed edges going out from i.
- 3. Therefore, Total no. of directed edges = $\sum_{i} m_{i}$.
- 4. But now, let X be the total number of handshakes. Clearly this is an integer.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in seven steps:

- 1. Define a relation R: iRj if i and j shook hands. Is this relation symmetric (trans/refl.)? Draw its graph.
- 2. Let m_i be the number of times i shakes hands. i.e., m_i is the number of directed edges going out from i.
- 3. Therefore, Total no. of directed edges = $\sum_{i} m_{i}$.
- 4. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges = $2 \cdot X$.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in seven steps:

- 1. Define a relation R: iRj if i and j shook hands. Is this relation symmetric (trans/refl.)? Draw its graph.
- 2. Let m_i be the number of times i shakes hands. i.e., m_i is the number of directed edges going out from i.
- 3. Therefore, Total no. of directed edges = $\sum_{i} m_{i}$.
- 4. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges = $2 \cdot X$.
- 5. i.e., $2 \cdot X = \sum_{i=1}^{n} m_i$

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in seven steps:

- 1. Define a relation R: iRj if i and j shook hands. Is this relation symmetric (trans/refl.)? Draw its graph.
- 2. Let m_i be the number of times i shakes hands. i.e., m_i is the number of directed edges going out from i.
- 3. Therefore, Total no. of directed edges = $\sum_{i} m_{i}$.
- 4. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges = $2 \cdot X$.
- 5. i.e., $2 \cdot X = \sum_{i=1}^{n} m_i = \sum_{\{i|m_i \text{ is odd}\}} m_i + \sum_{\{i|m_i \text{ is even}\}} m_i$

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in seven steps:

- 1. Define a relation R: iRj if i and j shook hands. Is this relation symmetric (trans/refl.)? Draw its graph.
- 2. Let m_i be the number of times i shakes hands. i.e., m_i is the number of directed edges going out from i.
- 3. Therefore, Total no. of directed edges = $\sum_{i} m_{i}$.
- 4. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges = $2 \cdot X$.
- 5. i.e., $2 \cdot X = \sum_{i=1}^{n} m_i = \sum_{\{i | m_i \text{ is odd}\}} m_i + \sum_{\{i | m_i \text{ is even}\}} m_i$
- 6. $\sum_{\{i|m_i \text{ is even}\}} m_i$ is even, as sum of even numbers is even.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in seven steps:

- 1. Define a relation R: iRj if i and j shook hands. Is this relation symmetric (trans/refl.)? Draw its graph.
- 2. Let m_i be the number of times i shakes hands. i.e., m_i is the number of directed edges going out from i.
- 3. Therefore, Total no. of directed edges = $\sum_{i} m_{i}$.
- 4. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges = $2 \cdot X$.
- 5. i.e., $2 \cdot X = \sum_{i=1}^{n} m_i = \sum_{\{i | m_i \text{ is odd}\}} m_i + \sum_{\{i | m_i \text{ is even}\}} m_i$
- 6. $\sum_{\{i|m_i \text{ is even}\}} m_i$ is even, as sum of even numbers is even. So $\sum_{\{i|m_i \text{ is odd}\}} m_i$ must also be even, but each of these m_i is odd, so $|\{i|m_i \text{ is odd}\}|$ has to be even.

Handshake Lemma

At a meeting with n people, the number of people who shake hands an odd number of times is even.

Proof in seven steps:

- 1. Define a relation R: iRj if i and j shook hands. Is this relation symmetric (trans/refl.)? Draw its graph.
- 2. Let m_i be the number of times i shakes hands. i.e., m_i is the number of directed edges going out from i.
- 3. Therefore, Total no. of directed edges = $\sum_{i} m_{i}$.
- 4. But now, let X be the total number of handshakes. Clearly this is an integer. Total no. of directed edges $= 2 \cdot X$.
- 5. i.e., $2 \cdot X = \sum_{i=1}^{n} m_i = \sum_{\{i | m_i \text{ is odd}\}} m_i + \sum_{\{i | m_i \text{ is even}\}} m_i$
- 6. $\sum_{\{i|m_i \text{ is even}\}} m_i$ is even, as sum of even numbers is even. So $\sum_{\{i|m_i \text{ is odd}\}} m_i$ must also be even, but each of these m_i is odd, so $|\{i|m_i \text{ is odd}\}|$ has to be even.
- 7. Thus number of i such that m_i is odd is even!

Recall:
$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$
. We generalize this...

Recall:
$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

We generalize this...

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z}^{\geq 0}$. Then,

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$$

$$(x + y)^{1} = x + y$$

$$(x + y)^{2} = (x + y)(x + y) = x^{2} + 2xy + y^{2}$$

$$(x + y)^{3} = (x + y)(x + y)^{2} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x + y)^{4} = (x + y)(x + y)^{3} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$
...

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z}^{\geq 0}$. Then,

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$$

(H.W-1) Prove this by induction.

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z}^{\geq 0}$. Then,

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$$

Proof (Combinatorial):

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z}^{\geq 0}$. Then,

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$$

Proof (Combinatorial):

- 1. Consider any term $x^i y^j$, where i + j = n.
- 2. To get $x^i y^j$ term in

$$(x+y)(x+y)\cdots(x+y)$$
 (n times)

we need to pick j y's from n sums and remaining x's.

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z}^{\geq 0}$. Then,

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$$

Proof (Combinatorial):

- 1. Consider any term $x^i y^j$, where i + j = n.
- 2. To get $x^i y^j$ term in

$$(x+y)(x+y)\cdots(x+y)$$
 (n times)

we need to pick j y's from n sums and remaining x's.

3. Thus, the coefficient of this term = number of ways to get this term = number of ways to pick j y's from n elts = $\binom{n}{j}$.

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z}^{\geq 0}$. Then,

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$$

Corollaries

- $1. \binom{n}{j} = \binom{n}{n-j},$
- 2. $\sum_{j=0}^{n} \binom{n}{j} 2^j = 3^n$.
- 3. No. of subsets of n-element set having even cardinality = No. of subsets of n-element set having odd cardinality (=?)

Binomial Theorem

Let x, y be variables and $n \in \mathbb{Z}^{\geq 0}$. Then,

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$$

Corollaries Ex: Using Binomial Thm show the following

- $1. \binom{n}{j} = \binom{n}{n-j},$
- 2. $\sum_{j=0}^{n} \binom{n}{j} 2^j = 3^n$.
- 3. No. of subsets of n-element set having even cardinality = No. of subsets of n-element set having odd cardinality (=?)

Pascal's Triangle

A recursive way to compute binomial coefficients

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Pascal's Triangle

A recursive way to compute binomial coefficients

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} & \begin{pmatrix} 3 \\ 1 \end{pmatrix} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} & \begin{pmatrix} 4 \\ 1 \end{pmatrix} & \begin{pmatrix} 4 \\ 2 \end{pmatrix} & \begin{pmatrix} 4 \\ 3 \end{pmatrix} & \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ 0 \end{pmatrix} & \begin{pmatrix} 5 \\ 1 \end{pmatrix} & \begin{pmatrix} 5 \\ 2 \end{pmatrix} & \begin{pmatrix} 5 \\ 3 \end{pmatrix} & \begin{pmatrix} 5 \\ 5 \end{pmatrix} & \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

Pascal's Triangle

A recursive way to compute binomial coefficients

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

```
1 5 10 10 5 1
1 7 21 35 35 21 7 1
      200 252
            200
```

Some simple observations. Recall:
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

- 1. Row i adds up to 2^i , Row i + 1 adds up to twice of row i.
- 2. Sequence of numbers, squares, cubes?

Some simple observations. Recall: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

- 1. Row i adds up to 2^i , Row i+1 adds up to twice of row i.
- 2. Sequence of numbers, squares, cubes?
- 3. Hockey stick patterns

Some simple observations. Recall: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

- 1. Row i adds up to 2^i , Row i + 1 adds up to twice of row i.
- 2. Sequence of numbers, squares, cubes?
- 3. Hockey stick patterns: (H.W-2) $\binom{n+1}{m} = \binom{n}{m} + \binom{n-1}{m-1} \dots + \binom{n-m}{0}$

```
1 2 1
         1 3 3 1
     1 5 10 10 5 1
         15 20 15 6
   1 7 21 35 35 21 7 1
 1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36
 10 45 120 200 252 200 120 45 10 1
```