
CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Sept 09, 2024
Lecture 19 – Counting and Combinatorics
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Counting and Combinatorics

Topics to be covered

▶ Basics of counting
▶ Product principle
▶ Sum principle
▶ Bijection principle
▶ Double counting

▶ Subsets, partitions, Permutations and combinations

1. Binomial coefficients and Binomial theorem
2. Pascal’s triangle
3. Permutations and combinations with repetitions

▶ Recurrence relations and generating functions

▶ Pigeonhole Principle and its extensions
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Fun with Pascal’s triangle

Some simple observations. Recall:
(
n+1
k

)
=

(
n

k−1

)
+
(
n
k

)
1. Row i adds up to 2i, Row i+ 1 adds up to twice of row i.

2. Sequence of numbers, squares, cubes?
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1. Row i adds up to 2i, Row i+ 1 adds up to twice of row i.

2. Sequence of numbers, squares, cubes?

3. Hockey stick patterns: (H.W-2)(
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Fun with Pascal’s triangle

Some not so simple observations

▶ For some rows, all values in the row (except first and last)
are divisible by the second!
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Fun with Pascal’s triangle

Some not so simple observations

▶ For some rows, all values in the row (except first and last)
are divisible by the second!

▶ In fact, for all prime rows? why should p divide
(
p
r

)
, r < p?

▶ Corollary: 2p − 2 is a multiple of p, for any prime p.

▶ Interesting Ex.: Count no. of odd numbers in each row...
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An application to path counting

Map problems

From the top corner, how many shortest routes lead to a
particular junction?

O

∗

▶ Denote path sequences of {L,R}, e.g., RRRLL reaches ∗.
▶ Our path has 5 segments of which there must be 3 R’s.
▶ Bijection from set of paths to subsets of fixed size.
▶ No. of paths = ways of choosing 3 R’s out of 5 elts =

(
5
3

)
.

H.W-3: Prove/verify this formally.
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Permutations and Combinations

How many ways can you select k objects from a set of n
elements?
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Combinations with repetitions

Theorem

The no. of ways k objects can be chosen from n, when
repetition is allowed is

(
n+k−1

k

)
=

(
n+k−1
n−1

)
.

1. Represent them as a list of n+ k − 1 comprising of two
types of symbols: bars (separators) and stars (objects).

2. e.g., suppose we want to select 5 obj from a set of 4 with
repetitions. Then, ∗ ∗ | ∗ || ∗ ∗ represents: 2 of the first, 1 of
the second, none of third and 2 of fourth.

3. There is a bijection between such lists and k-sets of n-obj
with repetitions allowed (why?).

4. Thus, question reduces to no. of ways to choose k stars or
n− 1 bars from a set of n− k + 1 positions =

(
n+k−1

k

)
.

▶ Ex: How many solutions does the equation
x1 + x2 + x3 + x4 = 17 have such that x1, x2, x3, x4 ∈ Z≥0 ?

6



Combinations with repetitions

Theorem

The no. of ways k objects can be chosen from n, when
repetition is allowed is

(
n+k−1

k

)
=

(
n+k−1
n−1

)
.

1. Represent them as a list of n+ k − 1 comprising of two
types of symbols: bars (separators) and stars (objects).

2. e.g., suppose we want to select 5 obj from a set of 4 with
repetitions. Then, ∗ ∗ | ∗ || ∗ ∗ represents: 2 of the first, 1 of
the second, none of third and 2 of fourth.

3. There is a bijection between such lists and k-sets of n-obj
with repetitions allowed (why?).

4. Thus, question reduces to no. of ways to choose k stars or
n− 1 bars from a set of n− k + 1 positions =

(
n+k−1

k

)
.

▶ Ex: How many solutions does the equation
x1 + x2 + x3 + x4 = 17 have such that x1, x2, x3, x4 ∈ Z≥0 ?

6



Combinations with repetitions

Theorem

The no. of ways k objects can be chosen from n, when
repetition is allowed is

(
n+k−1

k

)
=

(
n+k−1
n−1

)
.

1. Represent them as a list of n+ k − 1 comprising of two
types of symbols: bars (separators) and stars (objects).

2. e.g., suppose we want to select 5 obj from a set of 4 with
repetitions. Then, ∗ ∗ | ∗ || ∗ ∗ represents: 2 of the first, 1 of
the second, none of third and 2 of fourth.

3. There is a bijection between such lists and k-sets of n-obj
with repetitions allowed (why?).

4. Thus, question reduces to no. of ways to choose k stars or
n− 1 bars from a set of n− k + 1 positions =

(
n+k−1

k

)
.

▶ Ex: How many solutions does the equation
x1 + x2 + x3 + x4 = 17 have such that x1, x2, x3, x4 ∈ Z≥0 ?

6



Combinations with repetitions

Theorem

The no. of ways k objects can be chosen from n, when
repetition is allowed is

(
n+k−1

k

)
=

(
n+k−1
n−1

)
.

1. Represent them as a list of n+ k − 1 comprising of two
types of symbols: bars (separators) and stars (objects).

2. e.g., suppose we want to select 5 obj from a set of 4 with
repetitions. Then, ∗ ∗ | ∗ || ∗ ∗ represents: 2 of the first, 1 of
the second, none of third and 2 of fourth.

3. There is a bijection between such lists and k-sets of n-obj
with repetitions allowed (why?).

4. Thus, question reduces to no. of ways to choose k stars or
n− 1 bars from a set of n− k + 1 positions =

(
n+k−1

k

)
.

▶ Ex: How many solutions does the equation
x1 + x2 + x3 + x4 = 17 have such that x1, x2, x3, x4 ∈ Z≥0 ?

6



Combinations with repetitions

Theorem

The no. of ways k objects can be chosen from n, when
repetition is allowed is

(
n+k−1

k

)
=

(
n+k−1
n−1

)
.

1. Represent them as a list of n+ k − 1 comprising of two
types of symbols: bars (separators) and stars (objects).

2. e.g., suppose we want to select 5 obj from a set of 4 with
repetitions. Then, ∗ ∗ | ∗ || ∗ ∗ represents: 2 of the first, 1 of
the second, none of third and 2 of fourth.

3. There is a bijection between such lists and k-sets of n-obj
with repetitions allowed (why?).

4. Thus, question reduces to no. of ways to choose k stars or
n− 1 bars from a set of n− k + 1 positions =

(
n+k−1

k

)
.

▶ Ex: How many solutions does the equation
x1 + x2 + x3 + x4 = 17 have such that x1, x2, x3, x4 ∈ Z≥0 ?

6



Combinations with repetitions

Theorem

The no. of ways k objects can be chosen from n, when
repetition is allowed is

(
n+k−1

k

)
=

(
n+k−1
n−1

)
.

1. Represent them as a list of n+ k − 1 comprising of two
types of symbols: bars (separators) and stars (objects).

2. e.g., suppose we want to select 5 obj from a set of 4 with
repetitions. Then, ∗ ∗ | ∗ || ∗ ∗ represents: 2 of the first, 1 of
the second, none of third and 2 of fourth.

3. There is a bijection between such lists and k-sets of n-obj
with repetitions allowed (why?).

4. Thus, question reduces to no. of ways to choose k stars or
n− 1 bars from a set of n− k + 1 positions =

(
n+k−1

k

)
.

▶ Ex: How many solutions does the equation
x1 + x2 + x3 + x4 = 17 have such that x1, x2, x3, x4 ∈ Z≥0 ?

6



Estimating n!

How big is n!?

▶ It is clearly bigger than n and n2.

▶ Is it bigger than 2n, nn?

▶ Easy to see: for all n ≥ 4,

2n ≤ n! ≤ nn

▶ Can we do better?
Can we quantify how much more nn is compared to n!?

Theorem (Stirling’s Approximation)

e
(n
e

)n
≤ n! ≤ ne

(n
e

)n

where e is the base of natural logarithms, log(e) = elog(e) = 1.
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