CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Sept 09, 2024 Lecture 19 – Counting and Combinatorics

Counting and Combinatorics

Topics to be covered

- Basics of counting
 - Product principle
 - Sum principle
 - Bijection principle
 - ► Double counting

Counting and Combinatorics

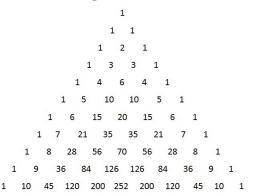
Topics to be covered

- Basics of counting
 - Product principle
 - Sum principle
 - Bijection principle
 - Double counting
- Subsets, partitions, Permutations and combinations
 - 1. Binomial coefficients and Binomial theorem
 - 2. Pascal's triangle
 - 3. Permutations and combinations with repetitions

Counting and Combinatorics

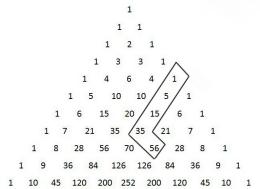
Topics to be covered

- Basics of counting
 - Product principle
 - Sum principle
 - Bijection principle
 - Double counting
- Subsets, partitions, Permutations and combinations
 - 1. Binomial coefficients and Binomial theorem
 - 2. Pascal's triangle
 - 3. Permutations and combinations with repetitions
- ▶ Recurrence relations and generating functions
- ▶ Pigeonhole Principle and its extensions



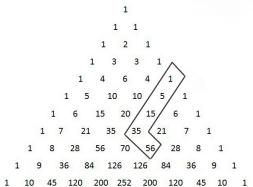
Some simple observations. Recall: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

- 1. Row i adds up to 2^i , Row i + 1 adds up to twice of row i.
- 2. Sequence of numbers, squares, cubes?



Some simple observations. Recall: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

- 1. Row i adds up to 2^i , Row i + 1 adds up to twice of row i.
- 2. Sequence of numbers, squares, cubes?
- 3. Hockey stick patterns

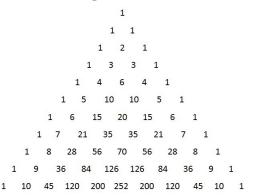


Some simple observations. Recall: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

- 1. Row i adds up to 2^i , Row i + 1 adds up to twice of row i.
- 2. Sequence of numbers, squares, cubes?

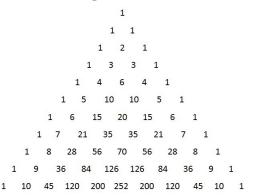
3. Hockey stick patterns: (H.W-2)

$$\binom{n+1}{m} = \binom{n}{m} + \binom{n-1}{m-1} \dots + \binom{n-m}{0}$$



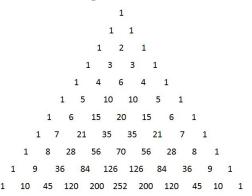
Some not so simple observations

For some rows, all values in the row (except first and last) are divisible by the second!



Some not so simple observations

- ▶ For some rows, all values in the row (except first and last) are divisible by the second!
- ▶ In fact, for all prime rows? why should p divide $\binom{p}{r}$, r < p?



Some not so simple observations

- ▶ For some rows, all values in the row (except first and last) are divisible by the second!
- ▶ In fact, for all prime rows? why should p divide $\binom{p}{r}$, r < p?
- Corollary: $2^p 2$ is a multiple of p, for any prime p.

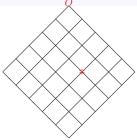
1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 15 20 15 6 21 35 35 21 1 7 7 1 1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 1 10 45 120 200 252 200 120 45 10 1

Some not so simple observations

- For some rows, all values in the row (except first and last) are divisible by the second!
- ▶ In fact, for all prime rows? why should p divide $\binom{p}{r}$, r < p?
- Corollary: $2^p 2$ is a multiple of p, for any prime p.
- ▶ Interesting Ex.: Count no. of odd numbers in each row...

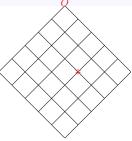
Map problems

From the top corner, how many shortest routes lead to a particular junction?



Map problems

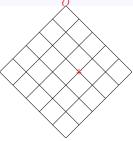
From the top corner, how many shortest routes lead to a particular junction?



▶ Denote path sequences of $\{L, R\}$, e.g., RRRLL reaches *.

Map problems

From the top corner, how many shortest routes lead to a particular junction?

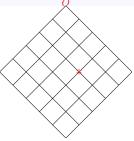


▶ Denote path sequences of $\{L, R\}$, e.g., RRRLL reaches *.

• Our path has 5 segments of which there must be 3 R's.

Map problems

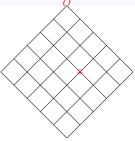
From the top corner, how many shortest routes lead to a particular junction?



- ▶ Denote path sequences of $\{L, R\}$, e.g., RRRLL reaches *.
- Our path has 5 segments of which there must be 3 R's.
- ▶ Bijection from set of paths to subsets of fixed size.

Map problems

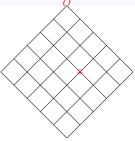
From the top corner, how many shortest routes lead to a particular junction?



- ▶ Denote path sequences of $\{L, R\}$, e.g., RRRLL reaches *.
- Our path has 5 segments of which there must be 3 R's.
- ▶ Bijection from set of paths to subsets of fixed size.
- ▶ No. of paths = ways of choosing 3 R's out of 5 elts = $\binom{5}{3}$.

Map problems

From the top corner, how many shortest routes lead to a particular junction?



- ▶ Denote path sequences of $\{L, R\}$, e.g., RRRLL reaches *.
- Our path has 5 segments of which there must be 3 R's.
- ▶ Bijection from set of paths to subsets of fixed size.

▶ No. of paths = ways of choosing 3 R's out of 5 elts = ⁵₃. H.W-3: Prove/verify this formally.

How many ways can you select k objects from a set of n elements?

How many ways can you select k objects from a set of n elements?

- Depends on whether order is significant:
 - ▶ If order matters, then permutations
 - Else, combinations.

How many ways can you select k objects from a set of n elements?

- Depends on whether order is significant:
 - ▶ If order matters, then permutations
 - Else, combinations.

Order significant	Order not significant
$n(n-1)\dots(n-k+1)$	$\binom{n}{k}$

How many ways can you select k objects from a set of n elements?

• Depends on whether order is significant:

- ▶ If order matters, then permutations
- Else, combinations.

	Order significant	Order not significant
Repetitions	$n(n-1)\dots(n-k+1)$	$\binom{n}{k}$
not allowed		

Permutations and Combinations with repetitions

How many ways can you select k objects from a set of n elements?

• Depends on whether order is significant:

- ▶ If order matters, then permutations
- Else, combinations.

	Order significant	Order not significant
Repetitions not allowed	$n(n-1)\dots(n-k+1)$	$\binom{n}{k}$
Repetitions are allowed		

Permutations and Combinations with repetitions

How many ways can you select k objects from a set of n elements?

• Depends on whether order is significant:

- ▶ If order matters, then permutations
- Else, combinations.

	Order significant	Order not significant
Repetitions	$n(n-1)\dots(n-k+1)$	$\binom{n}{k}$
not allowed		
Repetitions are allowed	n^k	

Permutations and Combinations with repetitions

How many ways can you select k objects from a set of n elements?

• Depends on whether order is significant:

- ▶ If order matters, then permutations
- Else, combinations.

	Order significant	Order not significant
Repetitions	$n(n-1)\dots(n-k+1)$	$\binom{n}{k}$
not allowed		
Repetitions are allowed	n^k	??

Theorem

Theorem

The no. of ways k objects can be chosen from n, when repetition is allowed is $\binom{n+k-1}{k} = \binom{n+k-1}{n-1}$.

1. Represent them as a list of n + k - 1 comprising of two types of symbols: bars (separators) and stars (objects).

Theorem

- 1. Represent them as a list of n + k 1 comprising of two types of symbols: bars (separators) and stars (objects).
- 2. e.g., suppose we want to select 5 obj from a set of 4 with repetitions. Then, ** |*|| ** represents: 2 of the first, 1 of the second, none of third and 2 of fourth.

Theorem

- 1. Represent them as a list of n + k 1 comprising of two types of symbols: bars (separators) and stars (objects).
- 2. e.g., suppose we want to select 5 obj from a set of 4 with repetitions. Then, ** |*|| ** represents: 2 of the first, 1 of the second, none of third and 2 of fourth.
- 3. There is a bijection between such lists and k-sets of n-obj with repetitions allowed (why?).

Theorem

- 1. Represent them as a list of n + k 1 comprising of two types of symbols: bars (separators) and stars (objects).
- 2. e.g., suppose we want to select 5 obj from a set of 4 with repetitions. Then, ** |*|| ** represents: 2 of the first, 1 of the second, none of third and 2 of fourth.
- 3. There is a bijection between such lists and k-sets of n-obj with repetitions allowed (why?).
- 4. Thus, question reduces to no. of ways to choose k stars or n-1 bars from a set of n-k+1 positions $= \binom{n+k-1}{k}$.

Theorem

- 1. Represent them as a list of n + k 1 comprising of two types of symbols: bars (separators) and stars (objects).
- 2. e.g., suppose we want to select 5 obj from a set of 4 with repetitions. Then, ** |*|| ** represents: 2 of the first, 1 of the second, none of third and 2 of fourth.
- 3. There is a bijection between such lists and k-sets of n-obj with repetitions allowed (why?).
- 4. Thus, question reduces to no. of ways to choose k stars or n-1 bars from a set of n-k+1 positions $= \binom{n+k-1}{k}$.
- Ex: How many solutions does the equation $x_1 + x_2 + x_3 + x_4 = 17$ have such that $x_1, x_2, x_3, x_4 \in \mathbb{Z}^{\geq 0}$?

How big is n!?

▶ It is clearly bigger than n and n^2 .

How big is n!?

- It is clearly bigger than n and n^2 .
- ▶ Is it bigger than 2^n , n^n ?

How big is n!?

- It is clearly bigger than n and n^2 .
- ▶ Is it bigger than 2^n , n^n ?

• Easy to see: for all $n \ge 4$,

 $2^n \le n! \le n^n$

How big is n!?

- It is clearly bigger than n and n^2 .
- ▶ Is it bigger than 2^n , n^n ?
- Easy to see: for all $n \ge 4$,

$$2^n \le n! \le n^n$$

Can we do better? Can we quantify how much more nⁿ is compared to n!?

How big is n!?

- It is clearly bigger than n and n^2 .
- ▶ Is it bigger than 2^n , n^n ?
- Easy to see: for all $n \ge 4$,

$$2^n \le n! \le n^n$$

Can we do better? Can we quantify how much more nⁿ is compared to n!?

Theorem (Stirling's Approximation)

$$e\left(\frac{n}{e}\right)^n \le n! \le ne\left(\frac{n}{e}\right)^n$$

where e is the base of natural logarithms, $\log(e) = e^{\log(e)} = 1$.