CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Sept 23, 2024
Lecture 21 — Counting and Combinatorics



Summary and what’s next

Part 1: Proofs and basic mathematical structures

Part 2: Counting and Combinatorics

> Basics of counting
» Product principle
» Sum principle
» Bijection principle
» Double counting
» Subsets, partitions, Permutations and combinations
1. Binomial coefficients and Binomial theorem
2. Pascal’s triangle
3. Permutations and combinations with repetitions
4. Estimating n!
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» Recurrence relations and generating functions

» Pigeonhole Principle and its extensions



Next: Recurrence relations and generating functions

Definition

> A recurrence relation for a sequence is an equation that
expresses its n term using one or more of the previous
terms of the sequence.

> A special case is the linear recurrence relation, which is of
the form
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Definition

> A recurrence relation for a sequence is an equation that
expresses its n term using one or more of the previous
terms of the sequence.

> A special case is the linear recurrence relation, which is of
the form

where ag,...,a;_1 € R,k € N are constants.

» k is called the degree/depth of the sequence.

» The first few (e.g., k elements ug,...,ux_1) are initial
conditions and they determine the whole sequence.
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Examples of Recurrences

How many bit strings of length n are there that do not
have two consecutive 0’s?

» How many such bit strings are there of length 2, 3, 47
» Find a recurrence relation for this
» Give the initial conditions

» How many such bit strings are there of length 87

How many ways are there to bracket a sum of n terms so
that it can be computed by adding two numbers at a time?
» Example: n=3:((a+b)+c¢),(a+ (b+c))

> n=4:(((a+b)+c)+d), ((a+b)+(c+d)), ((a+(b+c))+d), ...
In general, let C'(n) be the number of ways of doing this.



Examples of recurrences (Contd.)

How many ways are there to bracket a sum of n terms so
that it can be computed by adding two numbers at a time?

» Let C(n) be the number of ways of doing this.



Examples of recurrences (Contd.)

How many ways are there to bracket a sum of n terms so
that it can be computed by adding two numbers at a time?

» Let C(n) be the number of ways of doing this.

» If outermost bracketing (A + B) appears between xj and
Zi+1, then there are C(k) - C(n — k) ways of bracketing it.



Examples of recurrences (Contd.)

How many ways are there to bracket a sum of n terms so
that it can be computed by adding two numbers at a time?

» Let C(n) be the number of ways of doing this.

» If outermost bracketing (A + B) appears between xj and
Zi+1, then there are C(k) - C(n — k) ways of bracketing it.

» k can be anything from 1 till n — 1



Examples of recurrences (Contd.)

How many ways are there to bracket a sum of n terms so
that it can be computed by adding two numbers at a time?

» Let C(n) be the number of ways of doing this.

» If outermost bracketing (A + B) appears between xj and
Zi+1, then there are C(k) - C(n — k) ways of bracketing it.

> k can be anything from 1 till n — 1

» Thus, C ZC (n—1i)forn>1



Examples of recurrences (Contd.)

How many ways are there to bracket a sum of n terms so
that it can be computed by adding two numbers at a time?

>
>

| 2

>

>

>
>

Let C'(n) be the number of ways of doing this.

If outermost bracketing (A + B) appears between xj and
Zi+1, then there are C(k) - C(n — k) ways of bracketing it.

k can be anything from 1 till n — 1

Thus, C ZC’ (n—1i)forn>1

Initial conditions are C'(0) =0, C(1) =1 (by convention).
Note that C(2) =1,C(3) =2,C(4) =5.

This sequence are called Catalan numbers...

How do we solve such recurrences? We start with the Fibonacci
sequence.



An aside: find the Fibonacci sequence!

1 g8 28 56 70 56 28 8 1
1 9 36 8 126 126 8 36 9 1
1 10 45 120 200 252 200 120 45 10 1

» F(n)=F(n—1)+F(n—2).
> 1,1,2,3.5,8,13, ...

» Can you observe the sum of which terms in the Pascal’s
triangle gives rise to the terms of the Fibonacci sequence?
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How to “solve” the Fibonacci recurrence?
By solving, we mean give a closed-form expression for n'" term.

Fibonacci recurrence relation
Forn>2 F,=F, 1+ F, o, Fp=F =1.

Proof method 1 (for linear recurrences: try o™!)

1. try F,, = a"...
a” = a" ! + o™ 2 implies a"2(a? —a — 1) = 0.
So if o — a — 1 = 0, the recurrence holds for all n.
Solve it! = 155 g — 15

1+2\/5)n + b( 172\/5)n.

Thus, general solution is F,, = a(

S OU e Ol DD

How do we get a and b?



How to “solve” the Fibonacci recurrence?
By solving, we mean give a closed-form expression for n'" term.

Fibonacci recurrence relation
Forn>2 F,=F, 1+ F, o, Fp=F =1.

Proof method 1 (for linear recurrences: try a™!)

1. try F,, = a"...
2?2 —a-1)=0.
. So if a2 — a — 1 = 0, the recurrence holds for all n.

2
3
4. Solve it! a = 1+2\/5,ﬁ _ 1_2\/5
)
6

. a" = o™ 4+ "2 implies a

. Thus, general solution is F}, = a(H\f) + b(4 \f)"

z
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How to “solve” the Fibonacci recurrence?
By solving, we mean give a closed-form expression for n'" term.
Fibonacci recurrence relation

Forn>2 F,=F, 1+ F, o, Fh=F =1.

Proof method 1 (for linear recurrences: try a™!)
1. try F, =a”...

. a™ = a1 4+ a2 implies a" 2(a? —a — 1) = 0.

2
3. So if &® — a — 1 = 0, the recurrence holds for all n.
4

. Solve it! a = 1+2\/57ﬂ — 1—2\/5

5. Thus, general solution is F),, = a(1+27\/5)n + b(l_Q‘/‘F’)”.
6. Use Fy and F; — initial conditions: a = \25}1, b= \2[5—\/_51

Thus, F, = YL (15/8)n 4 5L (1=/E)n,
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Solving general linear recurrence sequences

» (C.W) Find a solution for a,, = ap—1 + 2a,,—2 with ag = 2,
a1 =77 Is ass > 225?

» Find a solution for a,, = 6a,_1 — 9a,_o, with
ag = 1,a1 = 67 Can you apply the same method for this?
What went wrong?

> Recall the recurrence for Catalan Numbers:
ZC (n—i) forn>1,C(0)=0,C(1) =
No. of Ways to bracket a sum of n terms s.t. it can be

computed by adding two numbers at a time?

This method does not work if we have repeated roots (this can
be fixed!) and non-linear recurrences.



