
CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Sept 24, 2024
Lecture 22 – Counting and Combinatorics

Solving Recurrence relations via generating functions
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Last few weeks

Basic counting techniques and applications

1. Sum and product, bijection, double counting principles

2. Binomial coefficients and binomial theorem, Pascal’s
triangle

3. Permutations and combinations with/without repetitions

4. Counting subsets, relations, Handshake lemma

5. Stirling’s approximation: Estimating n!

6. Recurrence relations and one method to solve them.

Today

Solving recurrence relations via generating functions.
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Solving general linear recurrence sequences

▶ (C.W) Find a solution for an = an−1 + 2an−2 with a0 = 2,
a1 = 7?

▶ Find a solution for an = 6an−1 − 9an−2, with
a0 = 1, a1 = 6? Can you apply the same method for this?
What went wrong?

▶ Recall the recurrence for Catalan Numbers:

C(n) =

n−1∑
i=1

C(i)C(n− i) for n > 1

C(0) = 0, C(1) = 1 (by convention) & C(2) = 1, C(3) = 2...
No. of ways to bracket a sum of n terms s.t. it can be
computed by adding two numbers at a time?

This method does not work if we have repeated roots (this can
be fixed!) and non-linear recurrences.

Reading assignment

Read examples/generalizations from Sections 6.1 and 6.2 from
Rosen’s book (6th Edition).
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Recap: Solving recurrence relations

By solving, we mean give a closed-form expression for nth term.

Fibonacci rec ∀n ≥ 2, Fn = Fn−1 + Fn−2, F0 = F1 = 1

Proof method 1 (for linear recurrences: try Fn = αn!)

1. αn = αn−1 + αn−2 implies αn−2(α2 − α− 1) = 0.

2. So if α2 − α− 1 = 0, the recurrence holds for all n.

3. Solving, α = 1+
√
5

2 , β = 1−
√
5

2

4. Thus, general solution is Fn = a(1+
√
5

2 )n + b(1−
√
5

2 )n.

5. Use F0 and F1 – initial conditions: a =
√
5+1
2
√
5
, b =

√
5−1
2
√
5

Thus, Fn =
√
5+1
2
√
5
(1+

√
5

2
)n +

√
5−1
2
√
5
(1−

√
5

2
)n.

This method fails for repeated roots/non-linear recurrences.

Reading assignment: how to tackle repeated roots case.

Read Sections 6.1 and 6.2 from Rosen’s book (6th Edition)

We next consider a method of much wider applicability...
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Proof Method 2: Using generating functions

Fibonacci recurrence relation

For n ≥ 2, Fn = Fn−1 + Fn−2, F0 = F1 = 1.
Compute Fn in terms of n. Recall: Fn = 1, 1, 2, 3, 5...
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Proof Method 2: Using generating functions

▶ ϕ(t) = 1
1−t−t2

= 1
(1−αt)(1−βt)=

a
1−αt +

b
1−βt

▶ Solving we get α = 1+
√
5

2 , β = 1−
√
5

2 , a =
√
5+1
2
√
5
, b =

√
5−1
2
√
5

▶ Now ϕ(t) = a(1 + αt+ α2t2 + . . .) + b(1 + βt+ β2t2 + . . .)

▶ Equating coefficients of tn we get Fn = aαn + bβn.

thus, as before

F (n) =

√
5 + 1

2
√
5

(
1 +

√
5

2

)n

+

√
5− 1

2
√
5

(
1−

√
5

2

)n
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Properties of generating functions

Definition

The (ordinary) generating function for a sequence a0, a1, . . . ∈ R
is the infinite series ϕ(x) =

∑∞
k=0 akx

k.

▶ Let f(x) =
∑∞

k=0 akx
k, g(x) =

∑∞
k=0 bkx

k. Then

1. If f(x) = g(x), then ak = bk for all k.
2. f(x) + g(x) =

∑∞
k=0(ak + bk)x

k,

3. f(x)g(x) =
∑∞

k=0(
∑k

j=0 ajbk−j)x
k,

4. d
dx (
∑∞

k=0 akx
k) =

∑∞
k=1(kak)x

k−1

▶ Let u ∈ R, k ∈ Z≥0, Then extended binomial coefficient
(
u
k

)
is defined as

(
u
k

)
= u(u−1)...(u−k+1)

k! if k > 0 and = 1 if k = 0.

▶ What if u = −n for n ∈ N?

The extended binomial theorem

Let u ∈ R, (1 + x)u =
∑∞

k=0

(
u
k

)
xk.

If you don’t like this, take x ∈ R, |x| < 1.
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Simple examples using generating functions

Standard identities:

▶ 1
1−ax =

∑∞
k=0 a

kxk

▶ 1
1−xr =

∑∞
k=0 x

rk

▶ ex =
∑∞

k=0
xk

k!

Class work/Pop Quiz!:

1. Solve the recurrence ak = 4ak−1 with a0 = 3.

2. A coding problem: A cryptographer builds a system
where a string of decimals is codeword if it contains an
even number of 0s. E.g., 1023038 is valid but not 10244.

Let an be the number of n-digit codewords. Empty string
is also valid.

2.1 Find a recurrence relation for an. What is a0, a1?
2.2 Solve the recurrence using generating functions.

8



Simple examples using generating functions

Standard identities:

▶ 1
1−ax =

∑∞
k=0 a

kxk

▶ 1
1−xr =

∑∞
k=0 x

rk

▶ ex =
∑∞

k=0
xk

k!

Class work/Pop Quiz!:

1. Solve the recurrence ak = 4ak−1 with a0 = 3.

2. A coding problem: A cryptographer builds a system
where a string of decimals is codeword if it contains an
even number of 0s. E.g., 1023038 is valid but not 10244.

Let an be the number of n-digit codewords. Empty string
is also valid.

2.1 Find a recurrence relation for an. What is a0, a1?
2.2 Solve the recurrence using generating functions.

8



Simple examples using generating functions

Standard identities:

▶ 1
1−ax =

∑∞
k=0 a

kxk

▶ 1
1−xr =

∑∞
k=0 x

rk

▶ ex =
∑∞

k=0
xk

k!

Class work/Pop Quiz!:

1. Solve the recurrence ak = 4ak−1 with a0 = 3.

2. A coding problem: A cryptographer builds a system
where a string of decimals is codeword if it contains an
even number of 0s. E.g., 1023038 is valid but not 10244.

Let an be the number of n-digit codewords. Empty string
is also valid.

2.1 Find a recurrence relation for an. What is a0, a1?
2.2 Solve the recurrence using generating functions.

8


