CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Sept 24, 2024
Lecture 22 – Counting and Combinatorics
Solving Recurrence relations via generating functions

Last few weeks

Basic counting techniques and applications

- 1. Sum and product, bijection, double counting principles
- 2. Binomial coefficients and binomial theorem, Pascal's triangle
- 3. Permutations and combinations with/without repetitions
- 4. Counting subsets, relations, Handshake lemma
- 5. Stirling's approximation: Estimating n!
- 6. Recurrence relations and one method to solve them.

Last few weeks

Basic counting techniques and applications

- 1. Sum and product, bijection, double counting principles
- 2. Binomial coefficients and binomial theorem, Pascal's triangle
- 3. Permutations and combinations with/without repetitions
- 4. Counting subsets, relations, Handshake lemma
- 5. Stirling's approximation: Estimating n!
- 6. Recurrence relations and one method to solve them.

Today

Solving recurrence relations via generating functions.

).

ightharpoonup (C.W) Find a solution for $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$, $a_1 = 7$?

- ightharpoonup (C.W) Find a solution for $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$, $a_1 = 7$?
- Find a solution for $a_n = 6a_{n-1} 9a_{n-2}$, with $a_0 = 1, a_1 = 6$? Can you apply the same method for this?

- ightharpoonup (C.W) Find a solution for $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$, $a_1 = 7$?
- Find a solution for $a_n = 6a_{n-1} 9a_{n-2}$, with $a_0 = 1, a_1 = 6$? Can you apply the same method for this? What went wrong?
- ▶ Recall the recurrence for Catalan Numbers:

$$C(n) = \sum_{i=1}^{n-1} C(i)C(n-i) \text{ for } n > 1$$

C(0) = 0, C(1) = 1 (by convention) & C(2) = 1, C(3) = 2...No. of ways to bracket a sum of n terms s.t. it can be computed by adding two numbers at a time?

- ightharpoonup (C.W) Find a solution for $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$, $a_1 = 7$?
- Find a solution for $a_n = 6a_{n-1} 9a_{n-2}$, with $a_0 = 1, a_1 = 6$? Can you apply the same method for this? What went wrong?
- ▶ Recall the recurrence for Catalan Numbers:

$$C(n) = \sum_{i=1}^{n-1} C(i)C(n-i) \text{ for } n > 1$$

C(0) = 0, C(1) = 1 (by convention) & C(2) = 1, C(3) = 2...No. of ways to bracket a sum of n terms s.t. it can be computed by adding two numbers at a time?

This method does not work if we have repeated roots (this can be fixed!) and non-linear recurrences.

- ightharpoonup (C.W) Find a solution for $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$, $a_1 = 7$?
- Find a solution for $a_n = 6a_{n-1} 9a_{n-2}$, with $a_0 = 1, a_1 = 6$? Can you apply the same method for this? What went wrong?
- ▶ Recall the recurrence for Catalan Numbers:

$$C(n) = \sum_{i=1}^{n-1} C(i)C(n-i) \text{ for } n > 1$$

C(0) = 0, C(1) = 1 (by convention) & C(2) = 1, C(3) = 2...No. of ways to bracket a sum of n terms s.t. it can be computed by adding two numbers at a time?

This method does not work if we have repeated roots (this can be fixed!) and non-linear recurrences.

Reading assignment

Read examples/generalizations from Sections 6.1 and 6.2 from Rosen's book (6th Edition).

By solving, we mean give a closed-form expression for n^{th} term.

Fibonacci rec $\forall n \geq 2, F_n = F_{n-1} + F_{n-2}, F_0 = F_1 = 1$

Fibonacci rec
$$\forall n \geq 2, F_n = F_{n-1} + F_{n-2}, F_0 = F_1 = 1$$

Proof method 1 (for linear recurrences: try $F_n = \alpha^n$!)

- 1. $\alpha^n = \alpha^{n-1} + \alpha^{n-2}$ implies $\alpha^{n-2}(\alpha^2 \alpha 1) = 0$.
- 2. So if $\alpha^2 \alpha 1 = 0$, the recurrence holds for all n.
- 3. Solving, $\alpha = \frac{1+\sqrt{5}}{2}$, $\beta = \frac{1-\sqrt{5}}{2}$
- 4. Thus, general solution is $F_n = a(\frac{1+\sqrt{5}}{2})^n + b(\frac{1-\sqrt{5}}{2})^n$.
- 5. Use F_0 and F_1 initial conditions: $a = \frac{\sqrt{5}+1}{2\sqrt{5}}$, $b = \frac{\sqrt{5}-1}{2\sqrt{5}}$

Fibonacci rec
$$\forall n \geq 2, F_n = F_{n-1} + F_{n-2}, F_0 = F_1 = 1$$

Proof method 1 (for linear recurrences: try $F_n = \alpha^n$!)

- 1. $\alpha^n = \alpha^{n-1} + \alpha^{n-2}$ implies $\alpha^{n-2}(\alpha^2 \alpha 1) = 0$.
- 2. So if $\alpha^2 \alpha 1 = 0$, the recurrence holds for all n.
- 3. Solving, $\alpha = \frac{1+\sqrt{5}}{2}$, $\beta = \frac{1-\sqrt{5}}{2}$
- 4. Thus, general solution is $F_n = a(\frac{1+\sqrt{5}}{2})^n + b(\frac{1-\sqrt{5}}{2})^n$.
- 5. Use F_0 and F_1 initial conditions: $a = \frac{\sqrt{5}+1}{2\sqrt{5}}$, $b = \frac{\sqrt{5}-1}{2\sqrt{5}}$

Thus,
$$F_n = \frac{\sqrt{5}+1}{2\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n + \frac{\sqrt{5}-1}{2\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n$$
.

Fibonacci rec
$$\forall n \geq 2, F_n = F_{n-1} + F_{n-2}, F_0 = F_1 = 1$$

Proof method 1 (for linear recurrences: try $F_n = \alpha^n$!)

- 1. $\alpha^n = \alpha^{n-1} + \alpha^{n-2}$ implies $\alpha^{n-2}(\alpha^2 \alpha 1) = 0$.
- 2. So if $\alpha^2 \alpha 1 = 0$, the recurrence holds for all n.
- 3. Solving, $\alpha = \frac{1+\sqrt{5}}{2}$, $\beta = \frac{1-\sqrt{5}}{2}$
- 4. Thus, general solution is $F_n = a(\frac{1+\sqrt{5}}{2})^n + b(\frac{1-\sqrt{5}}{2})^n$.
- 5. Use F_0 and F_1 initial conditions: $a = \frac{\sqrt{5}+1}{2\sqrt{5}}$, $b = \frac{\sqrt{5}-1}{2\sqrt{5}}$

Thus,
$$F_n = \frac{\sqrt{5}+1}{2\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n + \frac{\sqrt{5}-1}{2\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n$$
.

This method fails for repeated roots/non-linear recurrences.

Fibonacci rec
$$\forall n \geq 2, F_n = F_{n-1} + F_{n-2}, F_0 = F_1 = 1$$

Proof method 1 (for linear recurrences: try $F_n = \alpha^n$!)

- 1. $\alpha^n = \alpha^{n-1} + \alpha^{n-2}$ implies $\alpha^{n-2}(\alpha^2 \alpha 1) = 0$.
- 2. So if $\alpha^2 \alpha 1 = 0$, the recurrence holds for all n.
- 3. Solving, $\alpha = \frac{1+\sqrt{5}}{2}$, $\beta = \frac{1-\sqrt{5}}{2}$
- 4. Thus, general solution is $F_n = a(\frac{1+\sqrt{5}}{2})^n + b(\frac{1-\sqrt{5}}{2})^n$.
- 5. Use F_0 and F_1 initial conditions: $a = \frac{\sqrt{5}+1}{2\sqrt{5}}$, $b = \frac{\sqrt{5}-1}{2\sqrt{5}}$

Thus,
$$F_n = \frac{\sqrt{5}+1}{2\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n + \frac{\sqrt{5}-1}{2\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n$$
.

This method fails for repeated roots/non-linear recurrences.

Reading assignment: how to tackle repeated roots case.

Read Sections 6.1 and 6.2 from Rosen's book (6th Edition)

Fibonacci rec
$$\forall n \geq 2, F_n = F_{n-1} + F_{n-2}, F_0 = F_1 = 1$$

Proof method 1 (for linear recurrences: try $F_n = \alpha^n$!)

- 1. $\alpha^n = \alpha^{n-1} + \alpha^{n-2}$ implies $\alpha^{n-2}(\alpha^2 \alpha 1) = 0$.
- 2. So if $\alpha^2 \alpha 1 = 0$, the recurrence holds for all n.
- 3. Solving, $\alpha = \frac{1+\sqrt{5}}{2}$, $\beta = \frac{1-\sqrt{5}}{2}$
- 4. Thus, general solution is $F_n = a(\frac{1+\sqrt{5}}{2})^n + b(\frac{1-\sqrt{5}}{2})^n$.
- 5. Use F_0 and F_1 initial conditions: $a = \frac{\sqrt{5}+1}{2\sqrt{5}}, b = \frac{\sqrt{5}-1}{2\sqrt{5}}$

Thus,
$$F_n = \frac{\sqrt{5}+1}{2\sqrt{5}} (\frac{1+\sqrt{5}}{2})^n + \frac{\sqrt{5}-1}{2\sqrt{5}} (\frac{1-\sqrt{5}}{2})^n$$
.

This method fails for repeated roots/non-linear recurrences.

Reading assignment: how to tackle repeated roots case.

Read Sections 6.1 and 6.2 from Rosen's book (6th Edition)

We next consider a method of much wider applicability...

Fibonacci recurrence relation

For $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$. Compute F_n in terms of n. Recall: $F_n = 1, 1, 2, 3, 5...$

Fibonacci recurrence relation

For $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$. Compute F_n in terms of n. Recall: $F_n = 1, 1, 2, 3, 5...$

▶ Consider the power series... $\phi(t) = \sum_{n=0}^{\infty} F(n)t^n$.

Fibonacci recurrence relation

For $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$. Compute F_n in terms of n. Recall: $F_n = 1, 1, 2, 3, 5...$

Consider the power series... $\phi(t) = \sum_{n=0}^{\infty} F(n)t^n$. That is, $\phi(t) = 1 \cdot t^0 + 1 \cdot t^1 + 2 \cdot t^2 + 3 \cdot t^3 + 5 \cdot t^4 \dots$

Fibonacci recurrence relation

For $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$. Compute F_n in terms of n. Recall: $F_n = 1, 1, 2, 3, 5...$

Consider the power series... $\phi(t) = \sum_{n=0}^{\infty} F(n)t^n$. That is, $\phi(t) = 1 \cdot t^0 + 1 \cdot t^1 + 2 \cdot t^2 + 3 \cdot t^3 + 5 \cdot t^4 \dots$

$$t\phi(t) = \sum_{n=0}^{\infty} F(n)t^{n+1} = \sum_{n=1}^{\infty} F(n-1)t^n$$

Fibonacci recurrence relation

For $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$. Compute F_n in terms of n. Recall: $F_n = 1, 1, 2, 3, 5...$

Consider the power series... $\phi(t) = \sum_{n=0}^{\infty} F(n)t^n$. That is, $\phi(t) = 1 \cdot t^0 + 1 \cdot t^1 + 2 \cdot t^2 + 3 \cdot t^3 + 5 \cdot t^4 \dots$

$$t\phi(t) = \sum_{n=0}^{\infty} F(n)t^{n+1} = \sum_{n=1}^{\infty} F(n-1)t^n$$
$$t^2\phi(t) = \sum_{n=0}^{\infty} F(n)t^{n+2} = \sum_{n=0}^{\infty} F(n-2)t^n$$

Fibonacci recurrence relation

For $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$. Compute F_n in terms of n. Recall: $F_n = 1, 1, 2, 3, 5...$

▶ Consider the power series... $\phi(t) = \sum F(n)t^n$. That is, $\phi(t) = 1 \cdot t^0 + 1 \cdot t^1 + 2 \cdot t^2 + 3 \cdot t^3 + 5 \cdot t^4 \dots$ $t\phi(t) = \sum_{n=0}^{\infty} F(n)t^{n+1} = \sum_{n=0}^{\infty} F(n-1)t^n$ $t^{2}\phi(t) = \sum_{n=0}^{\infty} F(n)t^{n+2} = \sum_{n=0}^{\infty} F(n-2)t^{n}$ $(t+t^2)\phi(t) =$

Fibonacci recurrence relation

For $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$. Compute F_n in terms of n. Recall: $F_n = 1, 1, 2, 3, 5...$

▶ Consider the power series... $\phi(t) = \sum F(n)t^n$. That is, $\phi(t) = 1 \cdot t^0 + 1 \cdot t^1 + 2 \cdot t^2 + 3 \cdot t^3 + 5 \cdot t^4 \dots$ $t\phi(t) = \sum_{n=0}^{\infty} F(n)t^{n+1} = \sum_{n=0}^{\infty} F(n-1)t^n$ $t^{2}\phi(t) = \sum_{n=0}^{\infty} F(n)t^{n+2} = \sum_{n=0}^{\infty} F(n-2)t^{n}$ $(t+t^2)\phi(t) = t + \sum_{n=0}^{\infty} (F(n-1) + F(n-2))t^n$

Fibonacci recurrence relation

For $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$. Compute F_n in terms of n. Recall: $F_n = 1, 1, 2, 3, 5...$

▶ Consider the power series... $\phi(t) = \sum F(n)t^n$. That is, $\phi(t) = 1 \cdot t^0 + 1 \cdot t^1 + 2 \cdot t^2 + 3 \cdot t^3 + 5 \cdot t^4 \dots$ $t\phi(t) = \sum_{n=0}^{\infty} F(n)t^{n+1} = \sum_{n=0}^{\infty} F(n-1)t^n$ $t^{2}\phi(t) = \sum_{n=0}^{\infty} F(n)t^{n+2} = \sum_{n=0}^{\infty} F(n-2)t^{n}$ $(t+t^2)\phi(t) = t + \sum_{n=0}^{\infty} (F(n-1) + F(n-2))t^n = \sum_{n=0}^{\infty} F(n)t^n - 1$

Fibonacci recurrence relation

For $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$.

Compute F_n in terms of n. Recall: $F_n = 1, 1, 2, 3, 5...$

▶ Consider the power series... $\phi(t) = \sum_{n=0}^{\infty} F(n)t^n$.

That is, $\phi(t) = 1 \cdot t^0 + 1 \cdot t^1 + 2 \cdot t^2 + 3 \cdot t^3 + 5 \cdot t^4 \dots$

$$t\phi(t) = \sum_{n=0}^{\infty} F(n)t^{n+1} = \sum_{n=1}^{\infty} F(n-1)t^n$$
$$t^2\phi(t) = \sum_{n=0}^{\infty} F(n)t^{n+2} = \sum_{n=2}^{\infty} F(n-2)t^n$$

$$(t+t^2)\phi(t) = t + \sum_{n=2}^{\infty} (F(n-1) + F(n-2))t^n = \sum_{n=0}^{\infty} F(n)t^n - 1$$
$$(t+t^2)\phi(t) = \phi(t) - 1$$

$$\phi(t) = \frac{1}{1 - t - t^2}$$

$$ightharpoonup \phi(t) = \frac{1}{1 - t - t^2} = \frac{1}{(1 - \alpha t)(1 - \beta t)}$$

$$ightharpoonup \phi(t) = \frac{1}{1-t-t^2} = \frac{1}{(1-\alpha t)(1-\beta t)} = \frac{a}{1-\alpha t} + \frac{b}{1-\beta t}$$

▶ Solving we get
$$\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{1-\sqrt{5}}{2}, a = \frac{\sqrt{5}+1}{2\sqrt{5}}, b = \frac{\sqrt{5}-1}{2\sqrt{5}}$$

$$ightharpoonup \phi(t) = \frac{1}{1-t-t^2} = \frac{1}{(1-\alpha t)(1-\beta t)} = \frac{a}{1-\alpha t} + \frac{b}{1-\beta t}$$

► Solving we get
$$\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{1-\sqrt{5}}{2}, a = \frac{\sqrt{5}+1}{2\sqrt{5}}, b = \frac{\sqrt{5}-1}{2\sqrt{5}}$$

Now
$$\phi(t) = a(1 + \alpha t + \alpha^2 t^2 + ...) + b(1 + \beta t + \beta^2 t^2 + ...)$$

$$ightharpoonup \phi(t) = \frac{1}{1-t-t^2} = \frac{1}{(1-\alpha t)(1-\beta t)} = \frac{a}{1-\alpha t} + \frac{b}{1-\beta t}$$

► Solving we get
$$\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{1-\sqrt{5}}{2}, a = \frac{\sqrt{5}+1}{2\sqrt{5}}, b = \frac{\sqrt{5}-1}{2\sqrt{5}}$$

Now
$$\phi(t) = a(1 + \alpha t + \alpha^2 t^2 + ...) + b(1 + \beta t + \beta^2 t^2 + ...)$$

▶ Equating coefficients of t^n we get $F_n = a\alpha^n + b\beta^n$.

$$ightharpoonup \phi(t) = \frac{1}{1 - t - t^2} = \frac{1}{(1 - \alpha t)(1 - \beta t)} = \frac{a}{1 - \alpha t} + \frac{b}{1 - \beta t}$$

- ► Solving we get $\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{1-\sqrt{5}}{2}, a = \frac{\sqrt{5}+1}{2\sqrt{5}}, b = \frac{\sqrt{5}-1}{2\sqrt{5}}$
- Now $\phi(t) = a(1 + \alpha t + \alpha^2 t^2 + ...) + b(1 + \beta t + \beta^2 t^2 + ...)$
- ▶ Equating coefficients of t^n we get $F_n = a\alpha^n + b\beta^n$.

thus, as before

$$F(n) = \frac{\sqrt{5} + 1}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^n + \frac{\sqrt{5} - 1}{2\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2}\right)^n$$

Definition

The (ordinary) generating function for a sequence $a_0, a_1, \ldots \in \mathbb{R}$ is the infinite series $\phi(x) = \sum_{k=0}^{\infty} a_k x^k$.

- ▶ Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$, $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Then
 - 1. If f(x) = g(x), then $a_k = b_k$ for all k.
 - 2. $f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$,
 - 3. $f(x)g(x) = \sum_{k=0}^{\infty} (\sum_{j=0}^{k} a_j b_{k-j}) x^k$,
 - 4. $\frac{d}{dx}(\sum_{k=0}^{\infty} a_k x^k) = \sum_{k=1}^{\infty} (ka_k) x^{k-1}$

Definition

The (ordinary) generating function for a sequence $a_0, a_1, \ldots \in \mathbb{R}$ is the infinite series $\phi(x) = \sum_{k=0}^{\infty} a_k x^k$.

- ▶ Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$, $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Then
 - 1. If f(x) = g(x), then $a_k = b_k$ for all k.
 - 2. $f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$,
 - 3. $f(x)g(x) = \sum_{k=0}^{\infty} (\sum_{j=0}^{k} a_j b_{k-j}) x^k$,
 - 4. $\frac{d}{dx}(\sum_{k=0}^{\infty} a_k x^k) = \sum_{k=1}^{\infty} (ka_k) x^{k-1}$
- Let $u \in \mathbb{R}$, $k \in \mathbb{Z}^{\geq 0}$, Then extended binomial coefficient $\binom{u}{k}$ is defined as $\binom{u}{k} = \frac{u(u-1)\dots(u-k+1)}{k!}$ if k > 0 and k = 1 if k = 0.
- ▶ What if u = -n for $n \in \mathbb{N}$?

Definition

The (ordinary) generating function for a sequence $a_0, a_1, \ldots \in \mathbb{R}$ is the infinite series $\phi(x) = \sum_{k=0}^{\infty} a_k x^k$.

- ▶ Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$, $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Then
 - 1. If f(x) = g(x), then $a_k = b_k$ for all k.
 - 2. $f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$,
 - 3. $f(x)g(x) = \sum_{k=0}^{\infty} (\sum_{j=0}^{k} a_j b_{k-j}) x^k$,
 - 4. $\frac{d}{dx}(\sum_{k=0}^{\infty} a_k x^k) = \sum_{k=1}^{\infty} (ka_k) x^{k-1}$
- Let $u \in \mathbb{R}$, $k \in \mathbb{Z}^{\geq 0}$, Then extended binomial coefficient $\binom{u}{k}$ is defined as $\binom{u}{k} = \frac{u(u-1)\dots(u-k+1)}{k!}$ if k > 0 and k = 1 if k = 0.
- ▶ What if u = -n for $n \in \mathbb{N}$?

The extended binomial theorem

Let
$$u \in \mathbb{R}$$
, $(1+x)^u = \sum_{k=0}^{\infty} {u \choose k} x^k$.

Definition

The (ordinary) generating function for a sequence $a_0, a_1, \ldots \in \mathbb{R}$ is the infinite series $\phi(x) = \sum_{k=0}^{\infty} a_k x^k$.

- ▶ Let $f(x) = \sum_{k=0}^{\infty} a_k x^k$, $g(x) = \sum_{k=0}^{\infty} b_k x^k$. Then
 - 1. If f(x) = g(x), then $a_k = b_k$ for all k.
 - 2. $f(x) + g(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^k$,
 - 3. $f(x)g(x) = \sum_{k=0}^{\infty} (\sum_{j=0}^{k} a_j b_{k-j}) x^k$,
 - 4. $\frac{d}{dx}(\sum_{k=0}^{\infty} a_k x^k) = \sum_{k=1}^{\infty} (ka_k) x^{k-1}$
- Let $u \in \mathbb{R}$, $k \in \mathbb{Z}^{\geq 0}$, Then extended binomial coefficient $\binom{u}{k}$ is defined as $\binom{u}{k} = \frac{u(u-1)\dots(u-k+1)}{k!}$ if k > 0 and k = 1 if k = 0.
- ▶ What if u = -n for $n \in \mathbb{N}$?

The extended binomial theorem

Let $u \in \mathbb{R}$, $(1+x)^u = \sum_{k=0}^{\infty} {u \choose k} x^k$. If you don't like this, take $x \in \mathbb{R}$, |x| < 1.

Simple examples using generating functions

Standard identities:

Simple examples using generating functions

Standard identities:

Class work/Pop Quiz!:

1. Solve the recurrence $a_k = 4a_{k-1}$ with $a_0 = 3$.

Simple examples using generating functions

Standard identities:

Class work/Pop Quiz!:

- 1. Solve the recurrence $a_k = 4a_{k-1}$ with $a_0 = 3$.
- 2. A coding problem: A cryptographer builds a system where a string of decimals is codeword if it contains an even number of 0s. E.g., 1023038 is valid but not 10244.

Let a_n be the number of n-digit codewords. Empty string is also valid.

- 2.1 Find a recurrence relation for a_n . What is a_0, a_1 ?
- 2.2 Solve the recurrence using generating functions.