CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Sept 24, 2024
Lecture 22 — Counting and Combinatorics
Solving Recurrence relations via generating functions
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Today

Solving recurrence relations via generating functions.
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» (C.W) Find a solution for a,, = ap—1 + 2a,,—2 with ag = 2,
a) = 7?7

» Find a solution for a,, = 6a,_1 — 9a,_o, with
agp = 1,a1 = 67 Can you apply the same method for this?
What went wrong?

> Recall the recurrence for Catalan Numbers:

ZC’ (n—1i)forn>1

C(0) = 0, C(l) =1 (by convention) & C(2) =1,C(3) =
No. of ways to bracket a sum of n terms s.t. it can be
computed by adding two numbers at a time?
This method does not work if we have repeated roots (this can
be fixed!) and non-linear recurrences.

Reading assignment

Read examples/generalizations from Sections 6.1 and 6.2 from
Rosen’s book (6th Edition).
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We next consider a method of much wider applicability...
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> Solving we get a = 3 , 8= 2,0 = 2\/575— T

> Now ¢(t) = a(l+at + a2 +...) +b(1 + Bt + 22 +...)
» Equating coefficients of t" we get F,, = aa™ + b5".

thus, as before

VE+1 145\ V-1 (1-v5\"
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Definition

The (ordinary) generating function for a sequence ag,a,... € R
is the infinite series

> Let f(z) =Y 70, arz”, g(x) = > 70, bra®. Then
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4.
» Let u € R, k € Z20, Then extended binomial coefficient (“)
is defined as () :wlfk>03nd—llfk—0
» What if u = —n for n € N?

The extended binomial theorem

Let u e R, (1+2)" =Y 12, ()"
If you don’t like this, take z € R, |z| < 1.



Simple examples using generating functions

Standard identities:
1 _ o kok

> = Zk‘:o a~x

1 _ oo k

> = D ko @

k
B ooz
> e _Zk:Ok!




Simple examples using generating functions

Standard identities:
1 _ o] k., .k

> = Zk‘:o a~x

1 _ oo k

> =D o

k
T __ o0 4
> e —Zkzoﬁ

Class work/Pop Quiz!:

1. Solve the recurrence ay = 4ax_1 with ag = 3.



Simple examples using generating functions

Standard identities:
1 _ o] k., .k

- =Dk T

1 _ oo k
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Class work/Pop Quiz!:

1. Solve the recurrence ay = 4ax_1 with ag = 3.

2. A coding problem: A cryptographer builds a system
where a string of decimals is codeword if it contains an
even number of 0s. E.g., 1023038 is valid but not 10244.

Let a,, be the number of n-digit codewords. Empty string
is also valid.

2.1 Find a recurrence relation for a,,. What is ag,a1?

2.2 Solve the recurrence using generating functions.



