CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Sept 26, 2024
Lecture 23 — Counting and Combinatorics
Some Applications of Generating functions, Principle of Inclusion-Exclusion



Last few weeks

Basic counting techniques and applications

1.
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Sum and product, bijection, double counting principles

Binomial coefficients and binomial theorem, Pascal’s
triangle

Permutations and combinations with/without repetitions
Counting subsets, relations, Handshake lemma

Stirling’s approximation: Estimating n!

Recurrence relations and one method to solve them.

Solving recurrence relations via generating functions.
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Basic counting techniques and applications
1. Sum and product, bijection, double counting principles

2. Binomial coefficients and binomial theorem, Pascal’s
triangle

Permutations and combinations with/without repetitions
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Counting subsets, relations, Handshake lemma
Stirling’s approximation: Estimating n!

Recurrence relations and one method to solve them.
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Solving recurrence relations via generating functions.

Reading assignment

Read examples/generalizations from Sections 6.1 and 6.2 from
Rosen’s book (7th Indian Edition). In International 7th version
its Sec 8.2 and 8.47
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Properties of generating functions

Definition

The (ordinary) generating function for a sequence ag,a,... € R
is the infinite series

> Let f(z) =Y 70, arz”, g(x) = > 70, bra®. Then
1. .
2.

3. ,
4.
» Let u € R, k € Z20, Then extended binomial coefficient (“)
is defined as () :wlfk>03nd—llfk—0
» What if u = —n for n € N?

The extended binomial theorem

Let u e R, (1+2)" =Y 12, ()"
If you don’t like this, take z € R, |z| < 1.



Simple examples using generating functions

Standard identities:
1 _ o kok

> = Zk‘:o a~x

1 _ oo k

> = D ko @

k
B ooz
> e _Zk:Ok!




Forming and solving recurrences

» A coding problem: A cryptographer builds a system
where a string of decimals is codeword if it contains an
even number of 0s. E.g., 1023038 is valid but not 10244.

Let a, be the number of n-digit codewords. Empty string
is also valid.

1. Find a recurrence relation for a,,. What is ag, a1?

2. Solve the recurrence using generating functions.
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Forming and solving recurrences

» A coding problem: A cryptographer builds a system
where a string of decimals is codeword if it contains an
even number of 0s. E.g., 1023038 is valid but not 10244.

Let a, be the number of n-digit codewords. Empty string
is also valid.

1. Find a recurrence relation for a,,. What is ag, a1?
2. Solve the recurrence using generating functions.

» The recurrence formed is
ar = 9ax_1 + (10"t —a,_1) = 8aj_1 + 10k1
» Alsoag=1,a1 =9.

» Now can you solve it?
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Some applications of generating functions

> What is the number of ways aj, of selecting k£ elements from
an n element set if repetitions are allowed?

> Let ¢(z) = > poyanz®.

> Observe that ¢(z) = (1+z+22+..)"=(1—z)™"

» Expand this by the extended binomial theorem and
compare coefficients of z*.

> = () = (CDHHED ) = (),

> (H.W) What if there must be > 1 element of each type?
» Proving binomial identities: Show that »;_, (2)2 = (2:)

» Compare coefficients of 2™ in (1 + x)?" = ((1 + x)")2.

» (H.W) Write a recurrence for the number of derrangements.
That is, no. of ways to arrange n letters into n addressed
envelopes such that no letter goes to the correct envelope.

» (H.W) How many ways can a convex n-sided polygon be
cut into triangles by adding non-intersecting diagonals (i.e.,
connecting vertices with non-crossing lines)? Write a
recurrence and solve it!
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Solving Catalan numbers using generating functions
Catalan Numbers

ZC’ (n—1) forn>1,C(0)=0,C(1) = 1.

> Let ¢(z) = Y5, C(k)a”

» Now consider ¢(x)2.
> p(x)? = (3032 C(k)a®) (3252, Ck)a")
= (23 Xini CRIC(k = i)a)
= (X2 Clk)a*) = ¢(z) —
> Solving for ¢(z) we get, p(z) = (1 £ (1 — 42)1/2)
» But since ¢(0) = 0, we have
$z) = 5(1 - (1 —42)'?) = § + (—5(1 — 42)'/?).
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Catalan numbers

Recall: Extended binomial theorem

Let RS R, (1 +£U)a = Zoo (a)xn’ Where (g) — w

n=0 \n n!

> X Clk)ak = ¢(x) = L+ (—1(1 — 4a)V/2) =
T+ (-3 (1) (—a)k).

» The coefficient of z* is C(k) = —%(122)(—4)}c

=—36G-DG -2 (G -k +1) 5"
= 3D (EE)
> (k)= SR 13 (26— 3)

. k r“reee - —_ p— !
> Ok) = gty - A2 - e

Thus, the n'* Catalan number is given by
C(n) _ (2n—2)! _ l(2n—2)

nl(n—1)! n\n—1
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Principle of Inclusion-Exclusion (PIE)

A simple example:

P> If in a class n students like python, m students like C and
k students who like both, and ¢ like neither, then how
many students are there in the class?

» Of course, this also counts the no. who were too lazy to lift
their hands!

Theorem: Principle of Inclusion-Exclusion (PIE)
Let A1, Ao, ..., A, be finite sets. Then,

JATU..UA = ) A= D> JAin Ayl
1<i<n 1<i<j<n

+ > JANANA -+ ()" AN N Ay

1<i<j<k<n
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Number of surjections

» How many surjections are there from [n] = {1,...,n} to
[m] ={1,...,m}?

> # surjections = total #functions - those that miss some
element in range.

» Let A; ={f:[n] = [m]|i¢& Range(f)}

» Then, # surjections = m" — | Ujg[p, Ail-



