CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Sept 30, 2024

Lecture 24 – Counting and Combinatorics

Principle of Inclusion Exclusion and Pigeon-Hole Principle

Logistics

Quiz 2: Oct 18 Friday 8.15am

- ▶ Syllabus: Counting and Combinatorics, bit of Graph theory
- ▶ Venue: To be announced

).

Logistics

Quiz 2: Oct 18 Friday 8.15am

- ▶ Syllabus: Counting and Combinatorics, bit of Graph theory
- ▶ Venue: To be announced

Pop Quiz: Anytime

Theorem: Principle of Inclusion-Exclusion (PIE)

Let A_1, A_2, \ldots, A_n be finite sets. Then,

$$|A_1 \cup \ldots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

+
$$\sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1} |A_1 \cap \ldots \cap A_n|$$

Proof: (H.W): Prove PIE by induction.

Theorem: Principle of Inclusion-Exclusion (PIE)

Let A_1, A_2, \ldots, A_n be finite sets. Then,

$$|A_1 \cup \ldots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

+
$$\sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1} |A_1 \cap \ldots \cap A_n|$$

Proof:

► We will show that each element in the union is counted exactly once in the r.h.s

Theorem: Principle of Inclusion-Exclusion (PIE)

Let A_1, A_2, \ldots, A_n be finite sets. Then,

$$|A_1 \cup \ldots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

+
$$\sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1} |A_1 \cap \ldots \cap A_n|$$

Proof:

- ► We will show that each element in the union is counted exactly once in the r.h.s
- ▶ Let a belong to exactly r of the sets A_1, \ldots, A_n .

Theorem: Principle of Inclusion-Exclusion (PIE)

Let A_1, A_2, \ldots, A_n be finite sets. Then,

$$|A_1 \cup \ldots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

+
$$\sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1} |A_1 \cap \ldots \cap A_n|$$

Proof:

- ▶ We will show that each element in the union is counted exactly once in the r.h.s
- ▶ Let a belong to exactly r of the sets A_1, \ldots, A_n .
- ▶ Then a is counted $\binom{r}{1}$ times by $\sum |A_i|$, etc.

Theorem: Principle of Inclusion-Exclusion (PIE)

Let A_1, A_2, \ldots, A_n be finite sets. Then,

$$|A_1 \cup \ldots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

+
$$\sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1} |A_1 \cap \ldots \cap A_n|$$

Proof:

- ▶ We will show that each element in the union is counted exactly once in the r.h.s
- ▶ Let a belong to exactly r of the sets A_1, \ldots, A_n .
- ▶ Then a is counted $\binom{r}{1}$ times by $\sum |A_i|$, etc.
- ▶ Thus, overall count = $\binom{r}{1} \binom{r}{2} + \dots (-1)^{r+1} \binom{r}{r}$.

Theorem: Principle of Inclusion-Exclusion (PIE)

Let A_1, A_2, \ldots, A_n be finite sets. Then,

$$|A_1 \cup \ldots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

+
$$\sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1} |A_1 \cap \ldots \cap A_n|$$

Proof:

- ▶ We will show that each element in the union is counted exactly once in the r.h.s
- ▶ Let a belong to exactly r of the sets A_1, \ldots, A_n .
- ▶ Then a is counted $\binom{r}{1}$ times by $\sum |A_i|$, etc.
- ▶ Thus, overall count = $\binom{r}{1} \binom{r}{2} + \dots + \binom{r}{r}$.
- ▶ What is this number?!

Theorem: Principle of Inclusion-Exclusion (PIE)

Let A_1, A_2, \ldots, A_n be finite sets. Then,

$$|A_1 \cup \ldots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

+
$$\sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1} |A_1 \cap \ldots \cap A_n|$$

Proof:

- ▶ We will show that each element in the union is counted exactly once in the r.h.s
- ▶ Let a belong to exactly r of the sets A_1, \ldots, A_n .
- ▶ Then a is counted $\binom{r}{1}$ times by $\sum |A_i|$, etc.
- ▶ Thus, overall count = $\binom{r}{1} \binom{r}{2} + \dots + \binom{r}{r}$.
- \blacktriangleright What is this number?! =1!

▶ How many surjections are there from $[n] = \{1, ..., n\}$ to $[m] = \{1, ..., m\}$?

- ▶ How many surjections are there from $[n] = \{1, ..., n\}$ to $[m] = \{1, ..., m\}$?
- ▶ # surjections = total #functions those that miss some element in range.

- ▶ How many surjections are there from $[n] = \{1, ..., n\}$ to $[m] = \{1, ..., m\}$?
- ▶ # surjections = total #functions those that miss some element in range.
- ▶ Let $A_i = \{f : [n] \to [m] \mid i \notin Range(f)\}$
- ▶ Then, # surjections = $m^n | \bigcup_{i \in [m]} A_i |$.

- ▶ How many surjections are there from $[n] = \{1, ..., n\}$ to $[m] = \{1, ..., m\}$?
- ▶ # surjections = total #functions those that miss some element in range.
- $\blacktriangleright \text{ Let } A_i = \{f : [n] \to [m] \mid i \notin Range(f)\}$
- ▶ Then, # surjections = $m^n | \bigcup_{i \in [m]} A_i |$.

Theorem: Principle of Inclusion-Exclusion (PIE)

Let A_1, A_2, \ldots, A_n be finite sets. Then,

$$|A_1 \cup \ldots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

+
$$\sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1} |A_1 \cap \ldots \cap A_n|$$

- ▶ How many surjections are there from $[n] = \{1, ..., n\}$ to $[m] = \{1, ..., m\}$?
- ▶ # surjections = total #functions those that miss some element in range.
- ▶ Let $A_i = \{f : [n] \to [m] \mid i \notin Range(f)\}$
- ▶ Then, # surjections = $m^n | \bigcup_{i \in [m]} A_i |$.
- $| \cup_{i \in [m]} A_i | = \sum_{1 \le i \le m} |A_i| \sum_{1 \le i < j \le m} |A_i \cap A_j| + \sum_{1 \le i < j < k \le m} |A_i \cap A_j \cap A_k| \dots + (-1)^{m+1} |A_1 \cap \dots \cap A_m|$

- ▶ How many surjections are there from $[n] = \{1, ..., n\}$ to $[m] = \{1, ..., m\}$?
- ▶ # surjections = total #functions those that miss some element in range.
- ▶ Let $A_i = \{f : [n] \to [m] \mid i \notin Range(f)\}$
- ▶ Then, # surjections = $m^n | \bigcup_{i \in [m]} A_i |$.
- $| \cup_{i \in [m]} A_i | = \sum_{1 \le i \le m} |A_i| \sum_{1 \le i < j \le m} |A_i \cap A_j| + \sum_{1 \le i < j < k \le m} |A_i \cap A_j \cap A_k| \dots + (-1)^{m+1} |A_1 \cap \dots \cap A_m|$
- ▶ But now what is $|A_i|, |A_i \cap A_j|, |A_i \cap A_j \cap A_k|, ...$?

- ▶ How many surjections are there from $[n] = \{1, ..., n\}$ to $[m] = \{1, ..., m\}$?
- ▶ # surjections = total #functions those that miss some element in range.
- ▶ Let $A_i = \{f : [n] \to [m] \mid i \notin Range(f)\}$
- ▶ Then, # surjections = $m^n |\bigcup_{i \in [m]} A_i|$.
- $| \cup_{i \in [m]} A_i | = \sum_{1 \le i \le m} |A_i| \sum_{1 \le i < j \le m} |A_i \cap A_j| + \sum_{1 \le i < j < k \le m} |A_i \cap A_j \cap A_k| \dots + (-1)^{m+1} |A_1 \cap \dots \cap A_m|$
- ▶ But now what is $|A_i|, |A_i \cap A_i|, |A_i \cap A_i \cap A_k|, \dots$?
- $|A_i| = (m-1)^n, |A_i \cap A_j| = (m-2)^n...$

- ▶ How many surjections are there from $[n] = \{1, ..., n\}$ to $[m] = \{1, ..., m\}$?
- ▶ # surjections = total #functions those that miss some element in range.
- ▶ Let $A_i = \{f : [n] \to [m] \mid i \notin Range(f)\}$
- ▶ Then, # surjections = $m^n | \bigcup_{i \in [m]} A_i |$.
- $| \cup_{i \in [m]} A_i | = \sum_{1 \le i \le m} |A_i| \sum_{1 \le i < j \le m} |A_i \cap A_j| + \sum_{1 \le i < j < k \le m} |A_i \cap A_j \cap A_k| \dots + (-1)^{m+1} |A_1 \cap \dots \cap A_m|$
- ▶ But now what is $|A_i|, |A_i \cap A_i|, |A_i \cap A_i \cap A_k|, \dots$?
- $|A_i| = (m-1)^n, |A_i \cap A_j| = (m-2)^n...$
- ▶ What about the summation? terms $1 \le i < j \le m =$

- ▶ How many surjections are there from $[n] = \{1, ..., n\}$ to $[m] = \{1, ..., m\}$?
- ▶ # surjections = total #functions those that miss some element in range.
- ▶ Let $A_i = \{f : [n] \rightarrow [m] \mid i \notin Range(f)\}$
- ▶ Then, # surjections = $m^n |\bigcup_{i \in [m]} A_i|$.
- $| \cup_{i \in [m]} A_i | = \sum_{1 \le i \le m} |A_i| \sum_{1 \le i < j \le m} |A_i \cap A_j| + \sum_{1 \le i < j < k \le m} |A_i \cap A_j \cap A_k| \dots + (-1)^{m+1} |A_1 \cap \dots \cap A_m|$
- ▶ But now what is $|A_i|, |A_i \cap A_i|, |A_i \cap A_i \cap A_k|, \dots$?
- $|A_i| = (m-1)^n, |A_i \cap A_j| = (m-2)^n...$
- ▶ What about the summation? terms $1 \le i < j \le m = {m \choose 2}$

Thus, we have # surjections from
$$[n]$$
 to $[m] = m^n - \binom{m}{1}(m-1)^n + \binom{m}{2}(m-2)^n - \ldots + (-1)^{m-1}\binom{m}{m-1} \cdot 1^n$.

Pop Quiz!

- 1. Does there exist an injective function from a set of k+1 elements to a set with k elements? Why or why not?
- 2. How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?
- 3. Prove or disprove
 - 3.1 For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.
 - 3.2 Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length n + 1 which is either increasing or decreasing.
 - 3.3 If there are $n \ge 1 + r(\ell 1)$ objects which are colored with r different colors, then there exist ℓ objects all with the same color.

Pigeon-Hole Principle (PHP) and its applications

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let $k \in \mathbb{N}$. If k+1 (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let $k \in \mathbb{N}$. If k + 1 (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

How do you prove it?

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let $k \in \mathbb{N}$. If k+1 (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

How do you prove it?

A simple corollary

Can a function from a set of k + 1 or more elements to a set with k elements be injective?

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

Consider n + 1 integers $k_1 = 1$, $k_2 = 11$, $k_3 = 111$, ..., $k_{n+1} = 1 \dots 1$ (with n + 1 1's).

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

- Consider n + 1 integers $k_1 = 1$, $k_2 = 11$, $k_3 = 111$, ..., $k_{n+1} = 1 \dots 1$ (with n + 1 1's).
- When any integer is divided by n, the remainder can be either $0, 1, \ldots, n-1$, i.e., n choices.

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

- Consider n + 1 integers $k_1 = 1$, $k_2 = 11$, $k_3 = 111$, ..., $k_{n+1} = 1 \dots 1$ (with n + 1 1's).
- When any integer is divided by n, the remainder can be either $0, 1, \ldots, n-1$, i.e., n choices.
- \triangleright So among the n+1 integers, by PHP, at least 2 must have the same remainder.

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

- Consider n+1 integers $k_1 = 1$, $k_2 = 11$, $k_3 = 111$, ..., $k_{n+1} = 1 \dots 1$ (with n+1 1's).
- When any integer is divided by n, the remainder can be either $0, 1, \ldots, n-1$, i.e., n choices.
- So among the n+1 integers, by PHP, at least 2 must have the same remainder.
- ► That is, $\exists i, j, k_i = pn + d, k_j = qn + d$.
- ▶ But then $|k_i k_j|$ is a multiple of n and its decimal expansion only has 0's and 1's.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

▶ 4 boxes, one for each suit; each selected card is put in one.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

- ▶ 4 boxes, one for each suit; each selected card is put in one.
- ▶ If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

- ▶ 4 boxes, one for each suit; each selected card is put in one.
- ▶ If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.
- ▶ To have ≥ 3 cards from same suit, suffices $\lceil N/4 \rceil \geq 3$.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

- ▶ 4 boxes, one for each suit; each selected card is put in one.
- ▶ If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.
- ▶ To have ≥ 3 cards from same suit, suffices $\lceil N/4 \rceil \geq 3$.
- ightharpoonup Thus, N=9.

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

- ▶ 4 boxes, one for each suit; each selected card is put in one.
- ▶ If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.
- ▶ To have ≥ 3 cards from same suit, suffices $\lceil N/4 \rceil \geq 3$.
- ▶ Thus, N = 9. But can we do better?

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

- ▶ 4 boxes, one for each suit; each selected card is put in one.
- ▶ If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.
- ▶ To have ≥ 3 cards from same suit, suffices $\lceil N/4 \rceil \geq 3$.
- ▶ Thus, N = 9. But can we do better? No.

Question: Give a sequence of 10 real numbers with no subsequence of length 4 which is increasing or decreasing.

Question: Give a sequence of 10 real numbers with no subsequence of length 4 which is increasing or decreasing.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length n + 1 which is either increasing or decreasing.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length n + 1 which is either increasing or decreasing.

1. Let a_1, \ldots, a_{n^2+1} be a sequence of distinct real numbers.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length n + 1 which is either increasing or decreasing.

- 1. Let a_1, \ldots, a_{n^2+1} be a sequence of distinct real numbers.
- 2. For each $k \in \{1 \dots n^2 + 1\}$, let (i_k, d_k) denote a pair:
 - $i_k =$ length of longest increasing subsequence starting from a_k
 - d_k = length of longest decreasing subsequence starting from a_k

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length n + 1 which is either increasing or decreasing.

- 1. Let a_1, \ldots, a_{n^2+1} be a sequence of distinct real numbers.
- 2. For each $k \in \{1 \dots n^2 + 1\}$, let (i_k, d_k) denote a pair:
 - i_k = length of longest increasing subsequence starting from a_k
 - d_k = length of longest decreasing subsequence starting from a_k
- 3. Suppose, there are no increasing/decreasing subsequences of length n+1. Then $\forall k, i_k \leq n$ and $d_k \leq n$.
- 4. : by PHP, $\exists \ell, m, 1 \leq \ell < m \leq n^2 + 1 \text{ s.t. } (i_{\ell}, d_{\ell}) = (i_m, d_m)$
- 5. We will show that this is not possible:
 - ▶ Case 1: $a_{\ell} < a_m$. Then $i_m \ge i_{\ell} + 1$, a contradiction.
 - ▶ Case 2: $a_{\ell} > a_m$. Then $d_{\ell} \ge d_m + 1$, a contradiction.
- 6. All a_i 's are distinct so this completes the proof.