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Instructor : S. Akshay

Oct 01, 2024
Lecture 25 – Counting and Combinatorics

Pigeon-Hole Principle (PHP) and its extensions

1



Recap: Topics in Combinatorics

Counting techniques and applications

1. Basic counting techniques, double counting

2. Binomial theorem, permutations and combinations,
Estimating n!

3. Recurrence relations and generating functions

4. Principle of Inclusion-Exclusion (PIE) and its applications.
▶ Hand-shake Lemma
▶ Counting the number of surjections on [n].

5. Pigeon-Hole Principle (PHP) and its applications.
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Another application of PHP

Theorem

Every sequence of n2 + 1 distinct real numbers contains an
n+ 1-length increasing or decreasing subsequence.

By contradiction.

1. Let a1, . . . , an2+1 be sequence of distinct real numbers s.t
there are no increasing/decreasing subseq of length n+ 1.

2. For each k ∈ {1 . . . n2 + 1}, let (ik, dk) denote a pair:

ik = length of longest increasing subsequence starting from ak
dk = length of longest decreasing subsequence starting from ak

3. ∀k, ik ≤ n and dk ≤ n (why?)

4. ∴ by PHP, ∃ℓ,m, 1 ≤ ℓ < m ≤ n2 + 1 s.t. (iℓ, dℓ) = (im, dm)

5. We will show that this is not possible:
▶ Case 1: aℓ < am. Then im ≥ iℓ + 1, a contradiction.
▶ Case 2: aℓ > am. Then dℓ ≥ dm + 1, a contradiction.

6. All ai’s are distinct so this completes the proof.
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Different variants of PHP

Simplest formulation (Variant 0)

Let k ∈ N. If k + 1 (or more) objects are to be placed in k
boxes, then at least one box will have 2 (or more) objects.

PHP (Variant 1)

If N objects are placed into k boxes then there is at least one
box with at least ⌈N/k⌉ objects.

PHP (Variant 2)

If there are n ≥ 1 + r(ℓ− 1) objects colored with r different
colors, then there exist ℓ objects all with the same color.

4



Different variants of PHP

Simplest formulation (Variant 0)

Let k ∈ N. If k + 1 (or more) objects are to be placed in k
boxes, then at least one box will have 2 (or more) objects.

PHP (Variant 1)

If N objects are placed into k boxes then there is at least one
box with at least ⌈N/k⌉ objects.

PHP (Variant 2)

If there are n ≥ 1 + r(ℓ− 1) objects colored with r different
colors, then there exist ℓ objects all with the same color.

4



Different variants of PHP

Simplest formulation (Variant 0)

Let k ∈ N. If k + 1 (or more) objects are to be placed in k
boxes, then at least one box will have 2 (or more) objects.

PHP (Variant 1)

If N objects are placed into k boxes then there is at least one
box with at least ⌈N/k⌉ objects.

PHP (Variant 2)

If there are n ≥ 1 + r(ℓ− 1) objects colored with r different
colors, then there exist ℓ objects all with the same color.

4



Applications of PHP

1. Does there exist an injective function from a set of k + 1
elements to a set with k elements? Why or why not?

2. How many cards must be selected from a pack of 52 cards
so that at least three cards of the same suit are chosen?

3. Prove or disprove

3.1 For every n ∈ Z+, there exists a multiple of n whose
decimal expansion only has 0′s and 1′s.

3.2 Every sequence of n2 + 1 distinct real numbers contains a
subsequence of length n+ 1 which is either increasing or
decreasing.

3.3 (H.W.) If there are n ≥ 1 + r(ℓ− 1) objects which are
colored with r different colors, then there exist ℓ objects all
with the same color.
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This lecture

Pigeon-Hole Principle (PHP) and its extensions
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Let’s play a game

The coloring game

▶ There are six points on board and two colored chalks.

▶ Divide class into 2 groups. Group 1 draws white lines and
Group 2 draws blue lines between points.

▶ You lose if you are first to draw a triangle of your color.

▶ Can you ever have a draw?
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The coloring game

We will now show that this is impossible. That is,

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a
monochromatic triangle.

▶ 2-coloring of edges: coloring all edges of the graph using
atmost 2 colors.

▶ monochromatic (triangle): all edges have the same color.
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The coloring game

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a
monochromatic triangle.

Proof:

▶ Let 1, . . . , 6 be the points, and red/blue the colors.
▶ Consider the edges 16, 26, 36, 46, 56.
▶ By PHP at least 3 of them must be same color, say

16, 26, 36 are red.
▶ Now there are two possibilities:

▶ Either one of 12, 23, 31 is red (then we have a red triangle).
▶ Else none of them are red, implies 123 is a blue triangle.

▶ What if there were 5 or lesser nodes?

Optimality: 6 is the smallest such number

For any graph on 5 or less nodes the above lemma does not
hold.
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Another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has
either a red triangle or a blue complete graph on 4 nodes.

▶ complete: all pairs of edges are present.

▶ How do you prove this? Any ideas?

▶ How is this different from the previous problem?
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Another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has
either a red triangle or a blue complete graph on 4 nodes.

Proof:

x

a

b

c

d

x

a

b

c

d

e

f

▶ Consider all edges from some node x.

▶ Either ≥ 4 edges have red color or ≥ 6 have blue (why?).
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Another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has
either a red triangle or a blue complete graph on 4 nodes.

Proof:

x

a

b

c

d

▶ Case 1: ≥ 4 red edges
▶ Either one of edges between a, b, c, d is red or all are blue.

So, we are done.
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Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has
either a red triangle or a blue complete graph on 4 nodes.

▶ But, is this optimal?

▶ That is, does this fail for a graph on 9 nodes?

▶ Can you find 2-coloring on a graph of 9 nodes such that the
statement above does NOT hold?
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