CS 105: DIC on Discrete Structures

Instructor: S. Akshay

Oct 01, 2024

Lecture 25 – Counting and Combinatorics

Pigeon-Hole Principle (PHP) and its extensions

Recap: Topics in Combinatorics

Counting techniques and applications

- 1. Basic counting techniques, double counting
- 2. Binomial theorem, permutations and combinations, Estimating n!
- 3. Recurrence relations and generating functions
- 4. Principle of Inclusion-Exclusion (PIE) and its applications.
 - ► Hand-shake Lemma
 - ightharpoonup Counting the number of surjections on [n].

Recap: Topics in Combinatorics

Counting techniques and applications

- 1. Basic counting techniques, double counting
- 2. Binomial theorem, permutations and combinations, Estimating n!
- 3. Recurrence relations and generating functions
- 4. Principle of Inclusion-Exclusion (PIE) and its applications.
 - ► Hand-shake Lemma
 - ightharpoonup Counting the number of surjections on [n].
- 5. Pigeon-Hole Principle (PHP) and its applications.

Theorem

Every sequence of n^2+1 distinct real numbers contains an n+1-length increasing or decreasing subsequence.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains an n + 1-length increasing or decreasing subsequence.

By contradiction.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains an n + 1-length increasing or decreasing subsequence.

By contradiction.

1. Let a_1, \ldots, a_{n^2+1} be sequence of distinct real numbers s.t there are no increasing/decreasing subseq of length n+1.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains an n+1-length increasing or decreasing subsequence.

By contradiction.

- 1. Let a_1, \ldots, a_{n^2+1} be sequence of distinct real numbers s.t there are no increasing/decreasing subseq of length n+1.
- 2. For each $k \in \{1 \dots n^2 + 1\}$, let (i_k, d_k) denote a pair: i_k = length of longest increasing subsequence starting from a_k
 - d_k = length of longest decreasing subsequence starting from a_k

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains an n + 1-length increasing or decreasing subsequence.

By contradiction.

- 1. Let a_1, \ldots, a_{n^2+1} be sequence of distinct real numbers s.t there are no increasing/decreasing subseq of length n+1.
- 2. For each $k \in \{1 \dots n^2 + 1\}$, let (i_k, d_k) denote a pair: $i_k = \text{length of longest increasing subsequence starting from } a_k d_k = \text{length of longest decreasing subsequence starting from } a_k$
- 3. $\forall k, i_k \leq n \text{ and } d_k \leq n \text{ (why?)}$

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains an n + 1-length increasing or decreasing subsequence.

By contradiction.

- 1. Let a_1, \ldots, a_{n^2+1} be sequence of distinct real numbers s.t there are no increasing/decreasing subseq of length n+1.
- 2. For each $k \in \{1 \dots n^2 + 1\}$, let (i_k, d_k) denote a pair: $i_k = \text{length of longest increasing subsequence starting from } a_k = \text{length of longest decreasing subsequence starting from } a_k$
- 3. $\forall k, i_k \leq n \text{ and } d_k \leq n \text{ (why?)}$
- 4. : by PHP, $\exists \ell, m, 1 \le \ell < m \le n^2 + 1 \text{ s.t. } (i_{\ell}, d_{\ell}) = (i_m, d_m)$

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains an n + 1-length increasing or decreasing subsequence.

By contradiction.

- 1. Let a_1, \ldots, a_{n^2+1} be sequence of distinct real numbers s.t there are no increasing/decreasing subseq of length n+1.
- 2. For each $k \in \{1 \dots n^2 + 1\}$, let (i_k, d_k) denote a pair: $i_k = \text{length of longest increasing subsequence starting from } a_k = \text{length of longest decreasing subsequence starting from } a_k$
- 3. $\forall k, i_k \leq n \text{ and } d_k \leq n \text{ (why?)}$
- 4. : by PHP, $\exists \ell, m, 1 \leq \ell < m \leq n^2 + 1 \text{ s.t. } (i_{\ell}, d_{\ell}) = (i_m, d_m)$
- 5. We will show that this is not possible:
 - ▶ Case 1: $a_{\ell} < a_m$. Then $i_m \ge i_{\ell} + 1$, a contradiction.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains an n + 1-length increasing or decreasing subsequence.

By contradiction.

- 1. Let a_1, \ldots, a_{n^2+1} be sequence of distinct real numbers s.t there are no increasing/decreasing subseq of length n+1.
- 2. For each $k \in \{1 \dots n^2 + 1\}$, let (i_k, d_k) denote a pair: $i_k = \text{length of longest increasing subsequence starting from } a_k = \text{length of longest decreasing subsequence starting from } a_k$
- 3. $\forall k, i_k \leq n \text{ and } d_k \leq n \text{ (why?)}$
- 4. : by PHP, $\exists \ell, m, 1 \le \ell < m \le n^2 + 1 \text{ s.t. } (i_{\ell}, d_{\ell}) = (i_m, d_m)$
- 5. We will show that this is not possible:
 - ▶ Case 1: $a_{\ell} < a_m$. Then $i_m \ge i_{\ell} + 1$, a contradiction.
 - ▶ Case 2: $a_{\ell} > a_m$. Then $d_{\ell} \ge d_m + 1$, a contradiction.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains an n + 1-length increasing or decreasing subsequence.

By contradiction.

- 1. Let a_1, \ldots, a_{n^2+1} be sequence of distinct real numbers s.t there are no increasing/decreasing subseq of length n+1.
- 2. For each $k \in \{1 \dots n^2 + 1\}$, let (i_k, d_k) denote a pair: $i_k = \text{length of longest increasing subsequence starting from } a_k = \text{length of longest decreasing subsequence starting from } a_k$
- 3. $\forall k, i_k \leq n \text{ and } d_k \leq n \text{ (why?)}$
- 4. : by PHP, $\exists \ell, m, 1 \le \ell < m \le n^2 + 1 \text{ s.t. } (i_\ell, d_\ell) = (i_m, d_m)$
- 5. We will show that this is not possible:
 - Case 1: $a_{\ell} < a_m$. Then $i_m \ge i_{\ell} + 1$, a contradiction.
 - ▶ Case 2: $a_{\ell} > a_m$. Then $d_{\ell} \ge d_m + 1$, a contradiction.
- 6. All a_i 's are distinct so this completes the proof.

Different variants of PHP

Simplest formulation (Variant 0)

Let $k \in \mathbb{N}$. If k + 1 (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

Different variants of PHP

Simplest formulation (Variant 0)

Let $k \in \mathbb{N}$. If k + 1 (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

PHP (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Different variants of PHP

Simplest formulation (Variant 0)

Let $k \in \mathbb{N}$. If k + 1 (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

PHP (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

PHP (Variant 2)

If there are $n \ge 1 + r(\ell - 1)$ objects colored with r different colors, then there exist ℓ objects all with the same color.

Applications of PHP

- 1. Does there exist an injective function from a set of k + 1 elements to a set with k elements? Why or why not?
- 2. How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?
- 3. Prove or disprove
 - 3.1 For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.
 - 3.2 Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length n + 1 which is either increasing or decreasing.
 - 3.3 (H.W.) If there are $n \ge 1 + r(\ell 1)$ objects which are colored with r different colors, then there exist ℓ objects all with the same color.

This lecture

Pigeon-Hole Principle (PHP) and its extensions

The coloring game

▶ There are six points on board and two colored chalks.

The coloring game

- ▶ There are six points on board and two colored chalks.
- ▶ Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.

The coloring game

- ▶ There are six points on board and two colored chalks.
- ▶ Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- ➤ You lose if you are first to draw a triangle of your color.

The coloring game

- ▶ There are six points on board and two colored chalks.
- ▶ Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- ▶ You lose if you are first to draw a triangle of your color.
- ► Can you ever have a draw?

We will now show that this is impossible. That is,

We will now show that this is impossible. That is,

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

- ▶ 2-coloring of edges: coloring all edges of the graph using atmost 2 colors.
- ▶ monochromatic (triangle): all edges have the same color.

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

ightharpoonup Let $1, \ldots, 6$ be the points, and red/blue the colors.

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

- \triangleright Let $1, \ldots, 6$ be the points, and red/blue the colors.
- ightharpoonup Consider the edges 16, 26, 36, 46, 56.

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

- \triangleright Let $1, \ldots, 6$ be the points, and red/blue the colors.
- \triangleright Consider the edges 16, 26, 36, 46, 56.
- ▶ By PHP at least 3 of them must be same color, say 16, 26, 36 are red.

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

- \triangleright Let 1,..., 6 be the points, and red/blue the colors.
- \triangleright Consider the edges 16, 26, 36, 46, 56.
- ▶ By PHP at least 3 of them must be same color, say 16, 26, 36 are red.
- ▶ Now there are two possibilities:

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

- \triangleright Let $1, \ldots, 6$ be the points, and red/blue the colors.
- \triangleright Consider the edges 16, 26, 36, 46, 56.
- ▶ By PHP at least 3 of them must be same color, say 16, 26, 36 are red.
- Now there are two possibilities:
 - ▶ Either one of 12, 23, 31 is red (then we have a red triangle).

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

- \triangleright Let 1,..., 6 be the points, and red/blue the colors.
- \triangleright Consider the edges 16, 26, 36, 46, 56.
- ▶ By PHP at least 3 of them must be same color, say 16, 26, 36 are red.
- Now there are two possibilities:
 - ▶ Either one of 12, 23, 31 is red (then we have a red triangle).
 - ► Else none of them are red, implies 123 is a blue triangle.

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

- \triangleright Let 1,..., 6 be the points, and red/blue the colors.
- \triangleright Consider the edges 16, 26, 36, 46, 56.
- ▶ By PHP at least 3 of them must be same color, say 16, 26, 36 are red.
- Now there are two possibilities:
 - ▶ Either one of 12, 23, 31 is red (then we have a red triangle).
 - ► Else none of them are red, implies 123 is a blue triangle. □
- ▶ What if there were 5 or lesser nodes?

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- \triangleright Let 1,..., 6 be the points, and red/blue the colors.
- ightharpoonup Consider the edges 16, 26, 36, 46, 56.
- ▶ By PHP at least 3 of them must be same color, say 16, 26, 36 are red.
- Now there are two possibilities:
 - ▶ Either one of 12, 23, 31 is red (then we have a red triangle).
 - \triangleright Else none of them are red, implies 123 is a blue triangle. \square
- ▶ What if there were 5 or lesser nodes?

Optimality: 6 is the smallest such number

For any graph on 5 or less nodes the above lemma does not hold.

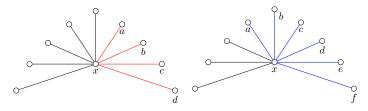
Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- **complete**: all pairs of edges are present.
- ► How do you prove this? Any ideas?
- ▶ How is this different from the previous problem?

Theorem

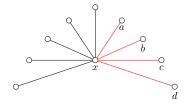
Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.



- \triangleright Consider all edges from some node x.
- ightharpoonup Either ≥ 4 edges have red color or ≥ 6 have blue (why?).

Theorem

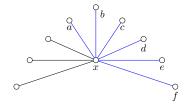
Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.



- ightharpoonup Case 1: ≥ 4 red edges
 - Either one of edges between a, b, c, d is red or all are blue. So, we are done.

Theorem

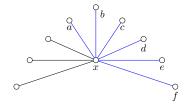
Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.



- ightharpoonup Case 2: ≥ 6 blue edges
 - \triangleright But this means that there are 6 nodes $a, \ldots f$.

Theorem

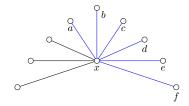
Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.



- ightharpoonup Case 2: ≥ 6 blue edges
 - ▶ But this means that there are 6 nodes $a, \ldots f$.
 - ▶ Any 2-coloring on 6 vertices has a red or blue triangle.
 - ► Thus we are done again.

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.



- ightharpoonup Case 2: ≥ 6 blue edges
 - ▶ But this means that there are 6 nodes $a, \ldots f$.
 - ▶ Any 2-coloring on 6 vertices has a red or blue triangle.
 - ► Thus we are done again.
- ▶ And this completes the proof.

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

▶ But, is this optimal?

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.

- ▶ But, is this optimal?
- ▶ That is, does this fail for a graph on 9 nodes?
- ► Can you find 2-coloring on a graph of 9 nodes such that the statement above does NOT hold?