
CS 105: DIC on Discrete Structures

Instructor : S. Akshay

Oct 03, 2024
Lecture 26 – Counting and Combinatorics

Searching for order in chaos!
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A second coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has
either a red triangle or a blue complete graph on 4 nodes.

▶ complete: all pairs of edges are present.

▶ How do you prove this? Any ideas?

▶ How is this different from the previous problem?
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A second coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has
either a red triangle or a blue complete graph on 4 nodes.

Proof:

x

a

b

c

d

x

a

b

c

d

e

f

▶ Consider all edges from some node x.

▶ Either ≥ 4 edges have red color or < 4 edges have red
color, i.e., ≥ 6 have blue.
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A second coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has
either a red triangle or a blue complete graph on 4 nodes.

Proof:

x

a

b

c

d

▶ Case 1: ≥ 4 red edges
▶ Either one of edges between a, b, c, d is red or all are blue.

So, we are done.
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▶ Case 2: < 4 red edges =⇒ ≥ 6 blue edges
▶ But this means that there are 6 nodes a, . . . f .
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A second coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has
either a red triangle or a blue complete graph on 4 nodes.

Proof:

x

a

b

c

d

e

f

▶ Case 2: < 4 red edges =⇒ ≥ 6 blue edges
▶ But this means that there are 6 nodes a, . . . f .
▶ Any 2-coloring on 6 vertices has a red or blue triangle.
▶ Thus we are done again.

▶ And this completes the proof.
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Another coloring problem...

Thus, we have showed...

Theorem

Any 2-coloring (say red and blue) of a graph on 10 nodes has
either a red triangle or a blue complete graph on 4 nodes.

▶ But, is this optimal?

▶ That is, does this fail for a graph on 9 nodes?

▶ Can you find 2-coloring on a graph of 9 nodes such that the
statement above does NOT hold?

Answer: No! In fact, it does hold on 9 nodes!

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has
either a red triangle or a blue complete graph on 4 nodes.
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Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has
either a red triangle or a blue complete graph on 4 nodes.

Proof:

▶ Try the same proof as above?

▶ The only new case, where the previous proof does not work,
is if all nodes have 3 red edges and 5 blue edges. (Why?)

▶ But is this case possible?

▶ Recall the Handshake lemma!
▶ In any graph, the number of nodes having odd degree is

even.

▶ Thus, this case is impossible and we are done.

4



Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has
either a red triangle or a blue complete graph on 4 nodes.

Proof:

▶ Try the same proof as above?

▶ The only new case, where the previous proof does not work,
is if all nodes have 3 red edges and 5 blue edges. (Why?)

▶ But is this case possible?

▶ Recall the Handshake lemma!
▶ In any graph, the number of nodes having odd degree is

even.

▶ Thus, this case is impossible and we are done.

4



Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has
either a red triangle or a blue complete graph on 4 nodes.

Proof:

▶ Try the same proof as above?

▶ The only new case, where the previous proof does not work,
is if all nodes have 3 red edges and 5 blue edges. (Why?)

▶ But is this case possible?

▶ Recall the Handshake lemma!
▶ In any graph, the number of nodes having odd degree is

even.

▶ Thus, this case is impossible and we are done.

4



Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has
either a red triangle or a blue complete graph on 4 nodes.

Proof:

▶ Try the same proof as above?

▶ The only new case, where the previous proof does not work,
is if all nodes have 3 red edges and 5 blue edges. (Why?)

▶ But is this case possible?

▶ Recall the Handshake lemma!
▶ In any graph, the number of nodes having odd degree is

even.

▶ Thus, this case is impossible and we are done.

4



Yet another coloring problem...

Theorem

Any 2-coloring (say red and blue) of a graph on 9 nodes has
either a red triangle or a blue complete graph on 4 nodes.

Proof:

▶ Try the same proof as above?

▶ The only new case, where the previous proof does not work,
is if all nodes have 3 red edges and 5 blue edges. (Why?)

▶ But is this case possible?

▶ Recall the Handshake lemma!
▶ In any graph, the number of nodes having odd degree is

even.

▶ Thus, this case is impossible and we are done.

4



Edge coloring problems

Summary of results till now

1. Any 2-coloring of a graph on 6 nodes has either a red
triangle or a blue triangle.
▶ 6 is the optimal such number.

2. Any 2-coloring of a graph on 10 nodes has either a red
triangle or a blue complete graph on 4 nodes.

3. Any 2-coloring of a graph on 9 nodes has either a red
triangle or a blue complete graph on 4 nodes.
▶ Is 9 the optimal such number?
▶ (H.W?) Prove that it is!

▶ (H.W) Prove that any 2-coloring of a graph on 18 nodes
has a monochromatic complete graph on 4 nodes.
(hint: you may use any of the above results)
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Can we generalize the above?

In general,

How many nodes should a (complete) graph have so that any 2
coloring of its edges has

▶ either, a k-sized complete graph with all red edges

▶ or, a ℓ-sized complete graph with all blue edges

▶ The minimal such number is denoted R(k, ℓ) and is called
Ramsey number.

▶ We have seen that R(3, 3) = 6.

▶ Also R(3, 4) = 9.

What about R(k, ℓ) in general?
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Ramsey’s theorem

Figure: Frank Plumpton Ramsey (1903-1930)

Ramsey’s theorem (simplified version)

For any k, ℓ ∈ N, there exists R(k, ℓ) ∈ N such that any
2-coloring of a (complete) graph on R(k, ℓ) nodes has

▶ either, a k-sized complete graph with all red edges

▶ or, a ℓ-sized complete graph with all blue edges

Moreover, we have

R(k, ℓ) ≤
(
k + ℓ− 2

k − 1

)
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Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain
some regular sub-part!

E.g., any 2-coloring on a complete graph of 10 nodes contains
either a complete graph of 3 nodes of one color or a complete
graph of 4 nodes of the other color.

▶ Suppose in a group of people any two are friends or
enemies.

▶ In any set of 10 people there must be either 3 mutual
friends or 4 mutual enemies.

8



Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain
some regular sub-part!

E.g., any 2-coloring on a complete graph of 10 nodes contains
either a complete graph of 3 nodes of one color or a complete
graph of 4 nodes of the other color.

▶ Suppose in a group of people any two are friends or
enemies.

▶ In any set of 10 people there must be either 3 mutual
friends or 4 mutual enemies.

8



Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain
some regular sub-part!

E.g., any 2-coloring on a complete graph of 10 nodes contains
either a complete graph of 3 nodes of one color or a complete
graph of 4 nodes of the other color.

▶ Suppose in a group of people any two are friends or
enemies.

▶ In any set of 10 people there must be either 3 mutual
friends or 4 mutual enemies.

8



Proof of Ramsey’s theorem

▶ What is R(n, 2) = R(2, n)?

▶ What is R(1, 1)? R(n, 1) = R(1, n)?

For all integers k, ℓ ≥ 2, R(k, ℓ) is finite.

Proof:

▶ By strong induction on k + ℓ.

▶ Base case: R(2, 2) = 2.

▶ Suppose it is true for all k, ℓ such that k + ℓ < N . We will
show that R(k, ℓ) is finite by showing

R(k, ℓ) ≤ R(k − 1, ℓ) +R(k, ℓ− 1)

Indeed, we can use induction to conclude that R(k, ℓ) is
finite, since by induction hypothesis R(k − 1, ℓ) and
R(k, ℓ− 1) exist (i.e., are finite) as k + ℓ− 1 < N .
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Proof of Ramsey’s theorem contd.

Claim: R(k, ℓ) ≤ R(k − 1, ℓ) +R(k, ℓ− 1)
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Proof of Ramsey’s theorem contd.

Claim: R(k, ℓ) ≤ R(k − 1, ℓ) +R(k, ℓ− 1)

▶ i.e, we just need to show:
Any 2-colored complete graph of R(k − 1, ℓ) +R(k, ℓ− 1)
nodes, has a complete red graph of k nodes or a complete
blue graph of ℓ nodes.
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Proof of Ramsey’s theorem contd.

Consider complete graph with R(k − 1, ℓ) +R(k, ℓ− 1) nodes.
x

R(k − 1, ℓ) +R(k, ℓ− 1)− 1
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M N
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x

M N

R(k − 1, ℓ) +R(k, ℓ− 1)− 1

▶ Clearly M +N = R(k − 1, ℓ) +R(k, ℓ− 1)− 1.
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x
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R(k − 1, ℓ) +R(k, ℓ− 1)− 1

▶ Case 1: M ≥ R(k − 1, ℓ). Either complete blue graph on ℓ
nodes or complete red graph on k − 1 nodes + x
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Proof of Ramsey’s theorem contd.

Consider complete graph with R(k − 1, ℓ) +R(k, ℓ− 1) nodes.
WTS It has k-node complete red or ℓ node complete blue graph

x

M N

R(k − 1, ℓ) +R(k, ℓ− 1)− 1

▶ Case 1: M ≥ R(k − 1, ℓ). ✓

▶ Case 2: N ≥ R(k, ℓ− 1) leads to same argument.(Do it!) ✓
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Proof of Ramsey’s theorem contd.

Consider complete graph with R(k − 1, ℓ) +R(k, ℓ− 1) nodes.
WTS It has k-node complete red or ℓ node complete blue graph

x

M N

R(k − 1, ℓ) +R(k, ℓ− 1)− 1

Thus in all cases, we have R(k, ℓ) ≤ R(k− 1, ℓ)+R(k, ℓ− 1).
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Proof of Ramsey’s theorem

Ramsey’s theorem (simplified version)

For all k, ℓ ≥ 2, R(k, ℓ) exists, i.e., it is finite. Further,

R(k, ℓ) ≤
(
k + ℓ− 2

k − 1

)
Proof:

11



Proof of Ramsey’s theorem

Ramsey’s theorem (simplified version)

For all k, ℓ ≥ 2, R(k, ℓ) exists, i.e., it is finite. Further,

R(k, ℓ) ≤
(
k + ℓ− 2

k − 1

)
Proof: Now, this should be trivial!

11



Proof of Ramsey’s theorem

Ramsey’s theorem (simplified version)

For all k, ℓ ≥ 2, R(k, ℓ) exists, i.e., it is finite. Further,

R(k, ℓ) ≤
(
k + ℓ− 2

k − 1

)
Proof:

▶ By induction on k + ℓ as before.

11



Proof of Ramsey’s theorem

Ramsey’s theorem (simplified version)

For all k, ℓ ≥ 2, R(k, ℓ) exists, i.e., it is finite. Further,

R(k, ℓ) ≤
(
k + ℓ− 2

k − 1

)
Proof:

▶ By induction on k + ℓ as before.

▶ Base case for k = ℓ = 2 is done.

11



Proof of Ramsey’s theorem
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For all k, ℓ ≥ 2, R(k, ℓ) exists, i.e., it is finite. Further,

R(k, ℓ) ≤
(
k + ℓ− 2

k − 1

)
Proof:

▶ By induction on k + ℓ as before.

▶ Base case for k = ℓ = 2 is done.

▶ By what we just showed and induction hypothesis we have:

R(k, ℓ) ≤ R(k − 1, ℓ) +R(k, ℓ− 1)

≤
(
k + ℓ− 3

k − 2

)
+

(
k + ℓ− 3

k − 1

)
=

(
k + ℓ− 2

k − 1

)
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Ramsey theory

Some interesting facts

▶ The general Ramsey theorem extends this to any finite
number of colors (not just 2).

▶ Several applications, vast research area!

▶ Exact values are known only for 6 or so entries: R(3, 3) = 6,

R(3, 4) = 9, R(4, 4) = 18,.... R(3, 8) = 28 or 29...

▶ Only bounds are known for rest. (see wiki on this...)

▶ What about lower bounds?

So how hard is it? Paul Erdös is supposed to have said:

Suppose an evil alien would tell mankind “Either you
tell me the value of R(5, 5) or I will exterminate the
human race.” ... It would be best to try to compute it,
both by mathematics and with a computer. If he would
ask for the value of R(6, 6), the best thing would be to
destroy him before he destroys us, because we couldn’t.
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