CS 105: DIC on Discrete Structures

Graph theory Basic terminology, Eulerian walks

Lecture 28 Oct 08 2024

Topic 3: Graph theory

Last topic of this course

Graphs and their properties!

Topic 3: Graph theory

Last topic of this course

Graphs and their properties!

Textbook Reference

- ▶ Introduction to Graph Theory, 2^{nd} Ed., by Douglas West.
- Low cost Indian edition available, published by PHI Learning Private Ltd.

Definition

A simple graph G is a pair (V, E) of a set of vertices/nodes V and edges E between unordered pairs of vertices called end-points: e = vu means e is an edge between v and u $(u \neq v)$.

Definition

A simple graph G is a pair (V, E) of a set of vertices/nodes V and edges E between unordered pairs of vertices called end-points: e = vu means e is an edge between v and u $(u \neq v)$.

General Definition

A graph G is a triple V, E, R where V is a set of vertices, E is a set of edges and $R \subseteq E \times V \times V$ is a relation.

Definition

A simple graph G is a pair (V, E) of a set of vertices/nodes V and edges E between unordered pairs of vertices called end-points: e = vu means e is an edge between v and u $(u \neq v)$.

General Definition

A graph G is a triple V, E, R where V is a set of vertices, E is a set of edges and $R \subseteq E \times V \times V$ is a relation.

We will consider only finite graphs (i.e., |V|, |E| are finite) and often simple graphs. Also, we assume |V| > 0.

► The degree d(v) of a vertex v (in an undirected loopless graph) is the number of edges incident to it, i.e., |{vw ∈ E | w ∈ V}|. A vertex of degree 0 is called an isolated vertex.

- ► The degree d(v) of a vertex v (in an undirected loopless graph) is the number of edges incident to it, i.e., |{vw ∈ E | w ∈ V}|. A vertex of degree 0 is called an isolated vertex.
- ▶ A walk is a sequence of vertices $v_1, \ldots v_k$ such that $\forall i \in \{1, \ldots k - 1\}, (v_i, v_{i+1}) \in E$. Vertices v_1 and v_k are called end-points and others are called internal vertices.

- ► The degree d(v) of a vertex v (in an undirected loopless graph) is the number of edges incident to it, i.e., |{vw ∈ E | w ∈ V}|. A vertex of degree 0 is called an isolated vertex.
- A walk is a sequence of vertices $v_1, \ldots v_k$ such that $\forall i \in \{1, \ldots k 1\}, (v_i, v_{i+1}) \in E$. Vertices v_1 and v_k are called end-points and others are called internal vertices.
- ▶ A walk is called closed if it starts and ends with the same vertex, i.e., its endpoints are the same.

- ► The degree d(v) of a vertex v (in an undirected loopless graph) is the number of edges incident to it, i.e., |{vw ∈ E | w ∈ V}|. A vertex of degree 0 is called an isolated vertex.
- A walk is a sequence of vertices $v_1, \ldots v_k$ such that $\forall i \in \{1, \ldots k 1\}, (v_i, v_{i+1}) \in E$. Vertices v_1 and v_k are called end-points and others are called internal vertices.
- ▶ A walk is called closed if it starts and ends with the same vertex, i.e., its endpoints are the same.
- ▶ A graph is connected if there is a walk between every two vertices.

- ► The degree d(v) of a vertex v (in an undirected loopless graph) is the number of edges incident to it, i.e., |{vw ∈ E | w ∈ V}|. A vertex of degree 0 is called an isolated vertex.
- A walk is a sequence of vertices $v_1, \ldots v_k$ such that $\forall i \in \{1, \ldots k 1\}, (v_i, v_{i+1}) \in E$. Vertices v_1 and v_k are called end-points and others are called internal vertices.
- ▶ A walk is called closed if it starts and ends with the same vertex, i.e., its endpoints are the same.
- ▶ A graph is connected if there is a walk between every two vertices.
- ▶ The length of a walk is the number of edges in it.

Basic terminology: Early Morning Quiz Part 1

1. Give examples for each of the following in the above graph:

- 1.1 All vertices of degree 3
- 1.2 A walk of length 5
- 1.3 A closed walk of length 6

Basic terminology: Early Morning Quiz Part 1

- 1. Give examples for each of the following in the above graph:
 - 1.1 All vertices of degree 3
 - 1.2 A walk of length 5
 - 1.3 A closed walk of length 6
- 2. True or False: (a) If a graph is not connected, it must have an isolated vertex.

(b) A graph is connected iff some vertex has an edge to every other vertex.

More definitions

 A path is a walk in which no vertex is repeated. Recall, its length is the number of edges in it.

More definitions

- A path is a walk in which no vertex is repeated. Recall, its length is the number of edges in it.
- ► A cycle is a (non-empty) closed walk whose internal vertices are all distinct from each other and from the end-point and edges are also distinct.

More definitions

- ► A path is a walk in which no vertex is repeated. Recall, its length is the number of edges in it.
- ► A cycle is a (non-empty) closed walk whose internal vertices are all distinct from each other and from the end-point and edges are also distinct.

- 3. Give examples for each of the following in the above graph:
 - 3.1 A path of length 5
 - 3.2~ A cycle of length 6~
- 4. True or False: Every path is a walk, every cycle is a closed walk. Converse?

More definitions

- ► A path is a walk in which no vertex is repeated. Recall, its length is the number of edges in it.
- ► A cycle is a (non-empty) closed walk whose internal vertices are all distinct from each other and from the end-point and edges are also distinct.

- 3. Give examples for each of the following in the above graph:
 - 3.1 A path of length 5
 - 3.2~ A cycle of length 6~
- 4. True or False: Every path is a walk, every cycle is a closed walk. Converse?

5. Prove or disprove

If every vertex of a graph G has degree at least 2, then G contains a cycle.

A path P is said to be maximal in G if it is not contained in any longer path. In a finite graph maximal paths exist.

5. Prove or disprove

If every vertex of a graph G has degree at least 2, then G contains a cycle.

A path P is said to be maximal in G if it is not contained in any longer path. In a finite graph maximal paths exist.

5. Prove or disprove

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof:

• Let P be a maximal path in G. It starts from some u.

A path P is said to be maximal in G if it is not contained in any longer path. In a finite graph maximal paths exist.

5. Prove or disprove

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof:

• Let P be a maximal path in G. It starts from some u.

Since P cannot be extended, every nbr of u is already in P.

A path P is said to be maximal in G if it is not contained in any longer path. In a finite graph maximal paths exist.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof:

- Let P be a maximal path in G. It starts from some u.
- Since P cannot be extended, every nbr of u is already in P.
- As $d(u) \ge 2$, $\exists v \text{ in } P \text{ such that } uv \notin P$.
- ▶ Thus we have the cycle $u \dots vu$.

A path P is said to be maximal in G if it is not contained in any longer path. In a finite graph maximal paths exist.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof:

• Let P be a maximal path in G. It starts from some u.

- Since P cannot be extended, every nbr of u is already in P.
- As $d(u) \ge 2$, $\exists v \text{ in } P \text{ such that } uv \notin P$.
- Thus we have the cycle $u \dots vu$.

Is this true if G were infinite?

A path P is said to be maximal in G if it is not contained in any longer path. In a finite graph maximal paths exist.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proof:

- Let P be a maximal path in G. It starts from some u.
- Since P cannot be extended, every nbr of u is already in P.
- As $d(u) \ge 2$, $\exists v \text{ in } P \text{ such that } uv \notin P$.
- \blacktriangleright Thus we have the cycle $u \dots vu$.

Is this true if G were infinite?

No! Consider $V = \mathbb{Z}, E = \{ij : |i - j| = 1\}.$

Definition

A graph is called Eulerian if it has a closed walk that contains all edges, and each edge occurs exactly once. Such a walk is called an Eulerian walk.

Definition

A graph is called Eulerian if it has a closed walk that contains all edges, and each edge occurs exactly once. Such a walk is called an Eulerian walk.

- ▶ If G is Eulerian, each vertex must have an even degree.
- ▶ This is a necessary condition, but is it sufficient?

Definition

A graph is called Eulerian if it has a closed walk that contains all edges, and each edge occurs exactly once. Such a walk is called an Eulerian walk.

- ▶ If G is Eulerian, each vertex must have an even degree.
- ▶ This is a necessary condition, but is it sufficient?

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Definition

A graph is called Eulerian if it has a closed walk that contains all edges, and each edge occurs exactly once. Such a walk is called an Eulerian walk.

- ▶ If G is Eulerian, each vertex must have an even degree.
- ▶ This is a necessary condition, but is it sufficient?

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Proof:

Definition

A graph is called Eulerian if it has a closed walk that contains all edges, and each edge occurs exactly once. Such a walk is called an Eulerian walk.

- ▶ If G is Eulerian, each vertex must have an even degree.
- ▶ This is a necessary condition, but is it sufficient?

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Proof: (\implies) Suppose G is Eulerian.

- ▶ Every vertex has even degree.
 - each passage through a vertex uses two edges (in and out).
 - ▶ at the first vertex first edge is paired with last.

Definition

A graph is called Eulerian if it has a closed walk that contains all edges, and each edge occurs exactly once. Such a walk is called an Eulerian walk.

- ▶ If G is Eulerian, each vertex must have an even degree.
- ▶ This is a necessary condition, but is it sufficient?

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Proof: (\implies) Suppose G is Eulerian.

- ▶ Every vertex has even degree.
 - each passage through a vertex uses two edges (in and out).
 - ▶ at the first vertex first edge is paired with last.
- Any two edges are in the same walk implies graph is connected (unless it has isolated vertices).

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Base case:
$$m = 1$$
.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

Proof (\Leftarrow): By induction on number of edges m in G.

• Induction step: m > 1. By Lemma G has a cycle C.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - \blacktriangleright Delete all edges in cycle C and (new) isolated vertices.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - \blacktriangleright Delete all edges in cycle C and (new) isolated vertices.
 - Get G_1, \ldots, G_k . Each G_i is
 - ► connected
 - ▶ has < m edges.
 - all its vertices have even degree (why? degree of any vertex was even and removing C, reduces each vertex degree by 0 or 2.)

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - \blacktriangleright Delete all edges in cycle C and (new) isolated vertices.
 - Get G_1, \ldots, G_k . Each G_i is
 - ► connected
 - ▶ has < m edges.
 - all its vertices have even degree (why? degree of any vertex was even and removing C, reduces each vertex degree by 0 or 2.)

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - \blacktriangleright Delete all edges in cycle C and (new) isolated vertices.
 - ▶ By indn hyp, each G_i is Eulerian, has a Eulerian walk.

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - Delete all edges in cycle C and (new) isolated vertices.
 - By indn hyp, each G_i is Eulerian, has a Eulerian walk.
 - Combine the cycle C and the Eulerian walk of G_1, \ldots, G_k to produce an Eulerian walk of G (how?).

Lemma

If every vertex of a graph G has degree at least 2, then G contains a cycle.

Theorem

A graph G with no isolated vertices is Eulerian iff it is connected and all its vertices have even degree.

- ▶ Induction step: m > 1. By Lemma G has a cycle C.
 - Delete all edges in cycle C and (new) isolated vertices.
 - ▶ By indn hyp, each G_i is Eulerian, has a Eulerian walk.
 - Combine the cycle C and the Eulerian walk of G_1, \ldots, G_k to produce an Eulerian walk of G (how?).
 - ▶ Traverse along cycle C in G and when some G_i is entered for first time, detour along an Eulerian walk of G_i .
 - ▶ This walk ends at vertex where we started detour.
 - When we complete traversal of C in this way, we have completed an Eulerian walk on G.