CS 105: DIC on Discrete Structures

Graph theory Basic terminology, Applications of Eulerian graphs, Bipartite graphs

> Lecture 29 Oct 10 2024

> > 1

1. Principle of extremality

 In proving the lemma we used a "new" important proof technique, called extremality.

1. Principle of extremality

- ▶ In proving the lemma we used a "new" important proof technique, called extremality.
- ▶ By considering some "extreme" structure, we got some additional information which we used in the proof.

1. Principle of extremality

- ▶ In proving the lemma we used a "new" important proof technique, called extremality.
- By considering some "extreme" structure, we got some additional information which we used in the proof.
- E.g., In the prev proof, since a maximal path could not be extended, we got that every neighbour of an endpoint of a maximal P is in P.

1. Principle of extremality

- ▶ In proving the lemma we used a "new" important proof technique, called extremality.
- By considering some "extreme" structure, we got some additional information which we used in the proof.
- E.g., In the prev proof, since a maximal path could not be extended, we got that every neighbour of an endpoint of a maximal P is in P.
- (H.W) Can you show the theorem directly from extremality without using induction?

2. Corollary

Every graph with all vertices having even degree decomposes into cycles

1. Principle of extremality

- ▶ In proving the lemma we used a "new" important proof technique, called extremality.
- By considering some "extreme" structure, we got some additional information which we used in the proof.
- E.g., In the prev proof, since a maximal path could not be extended, we got that every neighbour of an endpoint of a maximal P is in P.
- (H.W) Can you show the theorem directly from extremality without using induction?

2. Corollary

Every graph with all vertices having even degree decomposes into cycles

Proof: (H.W) or read from Douglas West's book!

Yet Another Pop Quiz (and Puzzle!)

Question

1. Can the above graph be drawn without lifting your pen from paper? No segment should be drawn twice.

Yet Another Pop Quiz (and Puzzle!)

Question

- 1. Can the above graph be drawn without lifting your pen from paper? No segment should be drawn twice.
- 2. How many times must you lift your pen to draw the graph?

Yet Another Pop Quiz (and Puzzle!)

Question

- 1. Can the above graph be drawn without lifting your pen from paper? No segment should be drawn twice.
- 2. How many times must you lift your pen to draw the graph?
- 3. For any connected graph G, what is the number of times we need to lift our pen to draw it?

Another application of Eulerian graphs

- This is the number of walks with no repeated edges into which it can be decomposed.
- ▶ Walks with no repeated edges are called trails.

Another application of Eulerian graphs

- This is the number of walks with no repeated edges into which it can be decomposed.
- ▶ Walks with no repeated edges are called trails.
- So, given a connected graph with |V| > 1 how many trails can it be decomposed into?

Another application of Eulerian graphs

- This is the number of walks with no repeated edges into which it can be decomposed.
- ▶ Walks with no repeated edges are called trails.
- So, given a connected graph with |V| > 1 how many trails can it be decomposed into? half of the odd vertices?

Another application of Eulerian graphs

- This is the number of walks with no repeated edges into which it can be decomposed.
- ▶ Walks with no repeated edges are called trails.
- So, given a connected graph with |V| > 1 how many trails can it be decomposed into? half of the odd vertices?
- can a graph have 2k + 1 odd vertices?

Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- This is the number of walks with no repeated edges into which it can be decomposed.
- ▶ Walks with no repeated edges are called trails.
- So, given a connected graph with |V| > 1 how many trails can it be decomposed into? half of the odd vertices?
- can a graph have 2k + 1 odd vertices?

Theorem

For a connected graph with |E| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Theorem

For a connected graph with |E| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

▶ A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times

Theorem

For a connected graph with |E| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

- ▶ A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- ▶ i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.

Theorem

For a connected graph with |E| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

- ▶ A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- ▶ i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
- Each trail has only 2 ends implies we use at least k trails to satisfy 2k odd vertices.

Theorem

For a connected graph with |E| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

- ▶ A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- ▶ i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
- Each trail has only 2 ends implies we use at least k trails to satisfy 2k odd vertices.
- We need at least one trail since G has an edge.

Theorem

For a connected graph with |E| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

- ▶ A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- ▶ i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
- Each trail has only 2 ends implies we use at least k trails to satisfy 2k odd vertices.
- We need at least one trail since G has an edge.
- ▶ Thus, we have shown that at least $\max\{k, 1\}$ trails are required.

Theorem

For a connected graph with |E| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

• If k = 0, one trail suffices (i.e., an Eulerian walk by previous Thm)

Theorem

For a connected graph with |E| > 1 and exactly 2k odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

- If k = 0, one trail suffices (i.e., an Eulerian walk by previous Thm)
- If k > 0 we need to prove that k trails suffice.
 - Pair up odd vertices in G (in any order) and form G' by adding an edge between them.
 - G' is connected, by previous Thm has an Eulerian walk C.
 - Traverse C in G' and for each time we cross an edge of G' not in G, start a new trail (lift pen!).
 - Thus, we get k trails decomposing G.

Some simple types of Graphs

▶ We have already seen some: connected graphs.

Some simple types of Graphs

- ▶ We have already seen some: connected graphs.
- ▶ paths, cycles.

Some simple types of Graphs

- ▶ We have already seen some: connected graphs.
- ▶ paths, cycles.
- ▶ Are there other interesting classes of graphs?

Definition

A graph is called **bipartite**, if the vertices of the graph can be partitioned into $V = X \cup Y$, $X \cap Y = \emptyset$ s.t., $\forall e = (u, v) \in E$,

- either $u \in X$ and $v \in Y$
- $\blacktriangleright \text{ or } v \in X \text{ and } u \in Y$

Definition

A graph is called **bipartite**, if the vertices of the graph can be partitioned into $V = X \cup Y$, $X \cap Y = \emptyset$ s.t., $\forall e = (u, v) \in E$,

- either $u \in X$ and $v \in Y$
- $\blacktriangleright \text{ or } v \in X \text{ and } u \in Y$

Example: m jobs and n people, k courses and ℓ students.

Definition

A graph is called **bipartite**, if the vertices of the graph can be partitioned into $V = X \cup Y$, $X \cap Y = \emptyset$ s.t., $\forall e = (u, v) \in E$,

- either $u \in X$ and $v \in Y$
- $\blacktriangleright \text{ or } v \in X \text{ and } u \in Y$

Example: m jobs and n people, k courses and ℓ students.

▶ How can we check if a graph is bipartite?

Definition

A graph is called **bipartite**, if the vertices of the graph can be partitioned into $V = X \cup Y$, $X \cap Y = \emptyset$ s.t., $\forall e = (u, v) \in E$,

- either $u \in X$ and $v \in Y$
- $\blacktriangleright \text{ or } v \in X \text{ and } u \in Y$

Example: m jobs and n people, k courses and ℓ students.

- ▶ How can we check if a graph is bipartite?
- ▶ Can we characterize bipartite graphs?

- Recall: A path or a cycle has length n if the number of edges in it is n.
- A path (or cycle) is call odd (or even) if its length is odd (or even, respectively).

- Recall: A path or a cycle has length n if the number of edges in it is n.
- A path (or cycle) is call odd (or even) if its length is odd (or even, respectively).

Exercise: Prove or disprove:

Every closed odd walk contains an odd cycle.

- Recall: A path or a cycle has length n if the number of edges in it is n.
- A path (or cycle) is call odd (or even) if its length is odd (or even, respectively).

Exercise: Prove or disprove:

Every closed odd walk contains an odd cycle.

Proof: By induction on the length of the given closed odd walk.

- Recall: A path or a cycle has length n if the number of edges in it is n.
- A path (or cycle) is call odd (or even) if its length is odd (or even, respectively).

Exercise: Prove or disprove:

Every closed odd walk contains an odd cycle.

Proof: By induction on the length of the given closed odd walk.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.