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Two points to note in last class’s proof

1. Principle of extremality

▶ In proving the lemma we used a “new” important proof
technique, called extremality.

▶ By considering some “extreme” structure, we got some
additional information which we used in the proof.

▶ E.g., In the prev proof, since a maximal path could not be
extended, we got that every neighbour of an endpoint of a
maximal P is in P .

▶ (H.W) Can you show the theorem directly from
extremality without using induction?
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Proof: (H.W) or read from Douglas West’s book!
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Yet Another Pop Quiz (and Puzzle!)

Question

1. Can the above graph be drawn without lifting your pen
from paper? No segment should be drawn twice.

2. How many times must you lift your pen to draw the graph?

3. For any connected graph G, what is the number of times
we need to lift our pen to draw it?
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Application of Eulerian graphs

Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how
many times must we stop and move the pen? No segment
should be drawn twice.

▶ This is the number of walks with no repeated edges into
which it can be decomposed.

▶ Walks with no repeated edges are called trails.
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▶ Walks with no repeated edges are called trails.

▶ So, given a connected graph with |V | > 1 how many trails
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For a connected graph with |E| > 1 and exactly 2k odd vertices,
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Application of Eulerian graphs

Theorem
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Proof idea: We will show that (i) at least these many trails are
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▶ A trail touches each vertex an even no. of times, except if
the trail is not closed, then the endpoints are touched odd
no. of times
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Application of Eulerian graphs

Theorem

For a connected graph with |E| > 1 and exactly 2k odd vertices,
the minimum number of trails that decompose it is max{k, 1}.

Proof idea: We will show that (i) at least these many trails are
required and (ii) these many trails suffice.

▶ If k = 0, one trail suffices (i.e., an Eulerian walk by
previous Thm)

▶ If k > 0 we need to prove that k trails suffice.
▶ Pair up odd vertices in G (in any order) and form G′ by

adding an edge between them.
▶ G′ is connected, by previous Thm has an Eulerian walk C.
▶ Traverse C in G′ and for each time we cross an edge of G′

not in G, start a new trail (lift pen!).
▶ Thus, we get k trails decomposing G.
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Some simple types of Graphs

▶ We have already seen some: connected graphs.

▶ paths, cycles.

▶ Are there other interesting classes of graphs?
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Bipartite graphs

Definition

A graph is called bipartite, if the vertices of the graph can be
partitioned into V = X ∪ Y , X ∩ Y = ∅ s.t., ∀e = (u, v) ∈ E,

▶ either u ∈ X and v ∈ Y

▶ or v ∈ X and u ∈ Y

Example: m jobs and n people, k courses and ℓ students.

▶ How can we check if a graph is bipartite?

▶ Can we characterize bipartite graphs?
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Characterizing bipartite graphs using cycles.

▶ Recall: A path or a cycle has length n if the number of
edges in it is n.

▶ A path (or cycle) is call odd (or even) if its length is odd
(or even, respectively).

Exercise: Prove or disprove:

Every closed odd walk contains an odd cycle.
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Characterizing bipartite graphs using cycles.

▶ Recall: A path or a cycle has length n if the number of
edges in it is n.

▶ A path (or cycle) is call odd (or even) if its length is odd
(or even, respectively).

Exercise: Prove or disprove:

Every closed odd walk contains an odd cycle.

Proof: By induction on the length of the given closed odd walk.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.
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