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Part 4: Graph theory

Recap of last four lectures:

1. Basics: graphs, paths, cycles, walks, trails; connected
graphs.

2. Eulerian graphs and a characterization in terms of degrees
of vertices.

3. Bipartite graphs and a characterization in terms of odd
length cycles.

: Sections 1.1-1.3 of Chapter 1 from Douglas West.
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Graph representations and naming



Some special graphs and notations
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» Complete graphs K,

» Complete bipartite graphs K; ;
» Paths P,

» Cycles C,
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Figure: A whole graph zoo!
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> As an adjacency list: :
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Representing and comparing graphs

We start with simple graphs...
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To represent it, we need to name the vertices...
> As an adjacency matrix:
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P> Reordering of vertices is same as applying a permutation to
rows and colums of A(G).

> So, it seems two graphs are “same” if by reordering and
renaming the vertices we get the same graph/matrix.



Representing and comparing graphs

We start with simple graphs...
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To represent it, we need to name the vertices...
> As an adjacency matrix:

V1 V2 V3 U4 V1 VU3 V2 U4 a b ¢ d

v1 /0 1 0 1 v1 /0 O 1 1 a /0 0 1 1

V2 1 0 1 0 U3 0 0 1 1 b0 0 1 1

vy 0O 1 0 1 vu | 1 1 0 O c|l1 1 0 0

vy \1 0 1 O vy \1 1 0 O d\1 1 0 0
to

> Reordering of vertices is same as applying a permutation
rows and colums of A(G).

» So, it seems two graphs are “same” if by reordering and
renaming the vertices we get the same graph/matrix.

» How do we formalize this?
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Definition

An isomorphism from simple graph GG to H is a bijection
f:V(G) = V(H) such that uwv € E(G) iff f(u)f(v) € E(H).
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[somorphism

Definition

An isomorphism from simple graph G to H is a bijection
f:V(G) = V(H) such that wv € E(G) iff f(u)f(v) € E(H).

» Thus, it is a bijection that “preserves” the edge relation.

» Can be checked using adjacency matrix by
reordering/renaming.

» What are the properties of this function/relation:
R ={(G,H) | 3 an isomorphism from G to H}.

Proposition

The isomorphism relation is an equivalence relation.

P> The equivalence classes are called isomorphism classes.

» When we talked about an “unlabeled” graph till now, we
actually meant the isomorphism class of that graph!
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Properties of isomorphic graphs

Intuitively, if two graphs are isomorphic then all structural
properties, i.e., properties that do not depend on the naming of
vertices are preserved.

Theorem

If G is isomorphic to H, then the following properties are
preserved:

1.
2. G, H have same # edges.

e

4. G has k paths/cycles of length r iff H has k paths/cycles of

=

G, H have same # vertices.

G, H have the same # vertices of degree k, Vk € N.

length 7.
G is bipartite iff H is bipartite.
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Exercise 1: Which of these graphs are isomorphic? Justify!



Graph isomorphism
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Exercise 1: Which of these graphs are isomorphic? Justify!

» To show that two graphs are isomorphic, you have to
1. give names to vertices
2. specify a bijection
3. check that it preserves the adjacency relation
» To show that two graphs are non-isomorphic, find a
structural property that is different.
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» 2 vertices that do not share an edge, have exactly 1
common nbr.



Is checking graph isomorphism easy?

> Exercise 2: Which of these graphs are isomorphic?

> A: All of them!
» This graph is called the Petersen graph and has some very
interesting propreties.
> vertices are 2-element subsets of 5-element set and edges are
pairs of disjoint 2-element subsets.
» 2 vertices that do not share an edge, have exactly 1
common nbr.

Further reading: Graph and sub-graph isomorphism problems.
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Graph Automorphisms

Definition
An isomorphism from simple graph G to H is a bijection

f:V(G) = V(H) such that wv € E(G) iff f(u)f(v) € E(H).
What if G = H?
An automorphism of G is an isomorphism from G to itself, i.e. a

bijection f: V(G) = V(G) s.t. wv € E(G) iff f(u)f(v) € E(G).

> What are the automorphisms of P47
» How many automorphisms does K,, have?
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Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection
f:V(G) = V(H) such that wv € E(G) iff f(u)f(v) € E(H).

An automorphism of G is an isomorphism from G to itself, i.e. a

bijection f: V(G) = V(Q) s.t. wv € E(G) iff f(u)f(v) € E(G).

Practical applications in graph drawing, visualization, molecular
symmetry, structured boolean satisfiability, formal verification




