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Graph theory

Connectedness in graphs
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Last topic: Graph theory

Recap

1. Basic definitions: graphs, paths, cycles, walks, trails;
connected graphs.

2. Eulerian graphs and a characterization in terms of degrees
of vertices.

3. Bipartite graphs and a characterization in terms of odd
length cycles.

4. Graph representation (as matrices, lists, etc.)
5. Graph isomorphisms and automorphisms
: Sections 1.1-1.3 of Chapter 1 from Douglas West.
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Recall: Graph Automorphisms

Definition
An isomorphism from simple graph G to H is a bijection

f:V(G) = V(H) such that wv € E(G) iff f(u)f(v) € E(H).
What if G = H?
An automorphism of G is an isomorphism from G to itself, i.e. a

bijection f: V(G) = V(G) s.t. wv € E(G) iff f(u)f(v) € E(G).
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Recall: Graph Automorphisms

Definition

An isomorphism from simple graph G to H is a bijection
f:V(G) = V(H) such that wv € E(G) iff f(u)f(v) € E(H).

An automorphism of G is an isomorphism from G to itself, i.e. a

bijection f: V(G) = V(Q) s.t. wv € E(G) iff f(u)f(v) € E(G).

Practical applications in graph drawing, visualization, molecular
symmetry, structured boolean satisfiability, formal verification




Cliques and independent sets

» Consider a large social network graph where friends are
linked by an edge.

» What is the largest clique of friends?

» If we want to spread a youtube video, how many people
should we send it to so that we are guaranteed everyone
will see it (assuming friends forward to each other)?
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» Thus, a clique in a graph G is a complete subgraph of G.

» An independent set in G is a complete subgraph of G,
where G is the complement of ¢ obtained by making all
adjacent vertices non-adjacent and vice versa.

Subgraphs of a graph G
A subgraph H of a graph G is a graph H such that
» V(H) C V(G) and
» E(H) C E(G)
& assignment of endpoints to edges in H is same as in G.
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Cliques and independent sets

Questions:

1. What is the size of the largest clique/independent set in
each of the above graphs? In any complete graph?

2. Given graph G, integer k, does G have a clique of size k7

3. In a graph with 6 vertices, can you always find a clique or
an independent set of size 37

Yes, because R(3,3) = 6!

Ramsey’s theorem - restated

In any graph with R(k,¢) vertices, there exists either a clique of
size k or an independent set of size £.
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Relations between vertices

» We considered a relation between graphs (isomorphism).

> But what about between vertices? Can you think of
interesting relations?

1. uRv iff there is an edge between v and v. Any
nice properties?

2. uPv iff there is a path between v and v.

P, i.e., connectedness is an equivalence relation.

Definition

A (connected) component of G is a maximal connected
subgraph, i.e., a subgraph that is connected and is not
contained in any other connected subgraph of G.

Thus, equivalence classes of P are the vertex sets of the
components of G.



Recall: Difference between maximal and maximum

P Is every maximal path maximum, i.e., have maximum
length?

> A maximal structure is a structure that is not contained in
a larger structure, i.e., increasing the structure will violate
some property.

> Maximum just means that size is the greatest among all
possible.



Recall: Difference between maximal and maximum

P Is every maximal path maximum, i.e., have maximum
length?

> A maximal structure is a structure that is not contained in
a larger structure, i.e., increasing the structure will violate
some property.

> Maximum just means that size is the greatest among all
possible.

Exercises!
1. Give a path which is maximal but not maximum.
2. Give a subgraph of a graph which is maximally connected,
but not maximum (i.e., does not have maximum # edges).

3. How many maximal/maximum independent sets does K s
have?
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Components and cut-edges

Properties of components

» A component with no edges is called trivial. Thus isolated
vertices form trivial components.

» Components are pairwise disjoint.

» What happens to the number of components when you add
or delete an edge?

> Edges whose deletion increases # components are called

Theorem: Characterize cut-edges using cycles
H.W. Exercise! An edge is a cut-edge iff it belongs to no cycle.



