CS 105: DIC on Discrete Structures

Graph theory Hall's theorem and its applications Guest Lecture: Rohit Gurjar

> Lecture 35 Oct 24 2024

> > 1

Topic 3: Graph theory

Basic definitions and concepts

Characterizations

- 1. Eulerian graphs: Using degrees of vertices.
- 2. Bipartite graphs: Using odd length cycles.
- 3. Connected components: Using cycles.
- 4. Maximum matchings: Using augmenting paths.

Topic 3: Graph theory

Basic definitions and concepts

Characterizations

- 1. Eulerian graphs: Using degrees of vertices.
- 2. Bipartite graphs: Using odd length cycles.
- 3. Connected components: Using cycles.
- 4. Maximum matchings: Using augmenting paths.
- 5. Perfect matchings in bipartite graphs: Using neighbour sets. Hall's theorem

Recap: Matchings

Definitions

- ▶ Matching: set of edges with no shared end-points.
- ▶ The vertices incident to edges in a matching are called saturated. Others are unsaturated.
- ▶ Perfect matching: saturates every vertex in graph.
- ▶ Maximum matching: matching of maximum size (# edges).
- ▶ Maximal matching: cannot be enlarged by adding an edge.

Recap: Matchings

Definitions

- ▶ Matching: set of edges with no shared end-points.
- The vertices incident to edges in a matching are called saturated. Others are unsaturated.
- ▶ Perfect matching: saturates every vertex in graph.
- ▶ Maximum matching: matching of maximum size (# edges).
- ▶ Maximal matching: cannot be enlarged by adding an edge.
- *M*-alternating path: alternates between edges in/out of M.
- *M*-augmenting path: An *M*-alternating path whose endpoints are unsaturated by M.

Recap: Matchings

Definitions

- ▶ Matching: set of edges with no shared end-points.
- The vertices incident to edges in a matching are called saturated. Others are unsaturated.
- ▶ Perfect matching: saturates every vertex in graph.
- ▶ Maximum matching: matching of maximum size (# edges).
- ▶ Maximal matching: cannot be enlarged by adding an edge.
- *M*-alternating path: alternates between edges in/out of M.
- *M*-augmenting path: An *M*-alternating path whose endpoints are unsaturated by M.

Theorem

A matching M in G is a maximum matching iff G has no M-augmenting path.

▶ If there are *n* women and *n* men, and each woman is compatible with exactly *k* men and each man compatible with exactly *k* women, can they be perfectly matched?

- ▶ If there are *n* women and *n* men, and each woman is compatible with exactly *k* men and each man compatible with exactly *k* women, can they be perfectly matched?
- If there are m jobs and n applicants, when can we find a perfect matching where all m jobs are saturated?

- Consider a bipartite graph with X, Y as partitions.
- ▶ If a matching M saturates X, then for every $S \subseteq X$,

- Consider a bipartite graph with X, Y as partitions.
- ▶ If a matching M saturates X, then for every $S \subseteq X$, what can we say?

- Consider a bipartite graph with X, Y as partitions.
- ▶ If a matching M saturates X, then for every $S \subseteq X$, there must exist at least |S| vertices that have neighbours in S.

- Consider a bipartite graph with X, Y as partitions.
- ▶ If a matching M saturates X, then for every $S \subseteq X$, there must exist at least |S| vertices that have neighbours in S.
- ▶ That is, $\forall S \subseteq X, |N(S)| \ge |S|$ (Hall's Condition).

- Consider a bipartite graph with X, Y as partitions.
- ▶ If a matching M saturates X, then for every $S \subseteq X$, there must exist at least |S| vertices that have neighbours in S.
- ▶ That is, $\forall S \subseteq X, |N(S)| \ge |S|$ (Hall's Condition). This is a necessary condition, is it sufficient?

- Consider a bipartite graph with X, Y as partitions.
- ▶ If a matching M saturates X, then for every $S \subseteq X$, there must exist at least |S| vertices that have neighbours in S.
- ▶ That is, $\forall S \subseteq X, |N(S)| \ge |S|$ (Hall's Condition). This is a necessary condition, is it sufficient?

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

- For $v \in V$, its neighbour-set $N(v) = \{u \in V \mid (u, v) \in E\}$.
- For $S \subseteq V$, $N(S) = \{u \in V \mid (u, v) \in E \text{ for some } v \in S\}$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Longrightarrow) is straightforward:

- \blacktriangleright Let *M* be a matching.
- ▶ Then for any $S \subseteq X$, each vertex of S is matched to a distinct vertex in N(S)

► So
$$|N(S)| \ge |S|$$
.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (<)

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

- Converse: If for all $S \subseteq X$, $|N(S)| \ge |S|$, then G has a matching that saturates X.
- ► Contrapositive:

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

- ▶ Converse: If for all $S \subseteq X$, $|N(S)| \ge |S|$, then G has a matching that saturates X.
- ▶ Contrapositive: If G does not have any matching that saturates X, then there must exist $S \subseteq X, |N(S)| < |S|$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

- ▶ Converse: If for all $S \subseteq X$, $|N(S)| \ge |S|$, then G has a matching that saturates X.
- ▶ Contrapositive: If G does not have any matching that saturates X, then there must exist $S \subseteq X, |N(S)| < |S|$.
- If G does not have any matching that saturates X, then surely any maximum matching of G does not saturate X.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

- ▶ Converse: If for all $S \subseteq X$, $|N(S)| \ge |S|$, then G has a matching that saturates X.
- ▶ Contrapositive: If G does not have any matching that saturates X, then there must exist $S \subseteq X, |N(S)| < |S|$.
- If G does not have any matching that saturates X, then surely any maximum matching of G does not saturate X.
- Let M be such a maximum matching. Then, we will construct $S \subseteq X$ s.t. |N(S)| < |S|.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) Thus, starting from a maximum matching M which does not saturate X, we construct $S \subseteq X, |N(S)| < |S|$.

• Let $u \in X$ be any unsaturated vertex of M.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) Thus, starting from a maximum matching M which does not saturate X, we construct $S \subseteq X, |N(S)| < |S|$.

▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) Thus, starting from a maximum matching M which does not saturate X, we construct $S \subseteq X, |N(S)| < |S|$.

▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: *M* matches *T* with $S \setminus \{u\}$ and |N(S)| = |T|.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) Thus, starting from a maximum matching M which does not saturate X, we construct $S \subseteq X, |N(S)| < |S|$.

▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: *M* matches *T* with $S \setminus \{u\}$ and |N(S)| = |T|.

• Every vertex of $S \setminus \{u\}$ has an edge in M to a vertex in T.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) Thus, starting from a maximum matching M which does not saturate X, we construct $S \subseteq X, |N(S)| < |S|$.

▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: *M* matches *T* with $S \setminus \{u\}$ and |N(S)| = |T|.

- Every vertex of $S \setminus \{u\}$ has an edge in M to a vertex in T.
- Every vertex of T extends via M to a unique vertex of S.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) Thus, starting from a maximum matching M which does not saturate X, we construct $S \subseteq X, |N(S)| < |S|$.

▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: *M* matches *T* with $S \setminus \{u\}$ and |N(S)| = |T|.

- Every vertex of $S \setminus \{u\}$ has an edge in M to a vertex in T.
- Every vertex of T extends via M to a unique vertex of S.
- ▶ Thus, there is a bijection between T and $S \setminus \{u\}$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) Thus, starting from a maximum matching M which does not saturate X, we construct $S \subseteq X, |N(S)| < |S|$.

▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: *M* matches *T* with $S \setminus \{u\}$ and |N(S)| = |T|.

▶ $T \subseteq N(S)$ (from T any M-alternating path will reach S).

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) Thus, starting from a maximum matching M which does not saturate X, we construct $S \subseteq X, |N(S)| < |S|$.

▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: *M* matches *T* with $S \setminus \{u\}$ and |N(S)| = |T|.

- ▶ $T \subseteq N(S)$ (from T any M-alternating path will reach S).
- Conversely, if $v \in S$ has edge to $y \in Y \setminus T$, then path from u to v via M to y is an M-alternating path, implies $y \in T$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

Proof: (\Leftarrow) Thus, starting from a maximum matching M which does not saturate X, we construct $S \subseteq X, |N(S)| < |S|$.

▶ Consider vertices V_u from u by M-alternating paths in G and let $S = V_u \cap X$ and $T = V_u \cap Y$.

Claim: M matches T with $S \setminus \{u\}$ and |N(S)| = |T|. Thus, |N(S)| = |T| = |S| - 1 < |S|

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

The Marriage Theorem (1917)

- In a group of n women and n men, if every woman is compatible with k men and every man compatible with k women, then a perfect matching must exist!
- ▶ What is the formal statement?

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

The Marriage Theorem (1917)

- ▶ In a group of *n* women and *n* men, if every woman is compatible with *k* men and every man compatible with *k* women, then a perfect matching must exist!
- ▶ For k > 0, every k-regular bipartite graph (i.e, every vertex has degree exactly k) has a perfect matching. Ex. Prove this!

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

The Marriage Theorem (1917)

- ▶ In a group of *n* women and *n* men, if every woman is compatible with *k* men and every man compatible with *k* women, then a perfect matching must exist!
- ▶ For k > 0, every k-regular bipartite graph (i.e, every vertex has degree exactly k) has a perfect matching. Ex. Prove this!

▶ If G is a k-regular X, Y bipartite graph, then |X| = |Y|. (why?)

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

The Marriage Theorem (1917)

- ▶ In a group of *n* women and *n* men, if every woman is compatible with *k* men and every man compatible with *k* women, then a perfect matching must exist!
- ▶ For k > 0, every k-regular bipartite graph (i.e, every vertex has degree exactly k) has a perfect matching. Ex. Prove this!
- ▶ If G is a k-regular X, Y bipartite graph, then |X| = |Y|.
- If a matching saturates X then it saturates Y.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

The Marriage Theorem (1917)

- ▶ In a group of *n* women and *n* men, if every woman is compatible with *k* men and every man compatible with *k* women, then a perfect matching must exist!
- For k > 0, every k-regular bipartite graph (i.e, every vertex has degree exactly k) has a perfect matching. Ex. Prove this!
- ▶ If G is a k-regular X, Y bipartite graph, then |X| = |Y|.
- If a matching saturates X then it saturates Y.
- ▶ Can you now verify Hall's condition?

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

The Marriage Theorem (1917)

- ▶ In a group of *n* women and *n* men, if every woman is compatible with *k* men and every man compatible with *k* women, then a perfect matching must exist!
- ▶ For k > 0, every k-regular bipartite graph (i.e, every vertex has degree exactly k) has a perfect matching. Ex. Prove this!
- ▶ If G is a k-regular X, Y bipartite graph, then |X| = |Y|.
- If a matching saturates X then it saturates Y.

• Let $S \subseteq X$. Let m = # edges from S to N(S).

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

The Marriage Theorem (1917)

- In a group of n women and n men, if every woman is compatible with k men and every man compatible with k women, then a perfect matching must exist!
- ▶ For k > 0, every k-regular bipartite graph (i.e, every vertex has degree exactly k) has a perfect matching. Ex. Prove this!
- If G is a k-regular X, Y bipartite graph, then |X| = |Y|.
- If a matching saturates X then it saturates Y.
 - Let $S \subseteq X$. Let m = # edges from S to N(S).
 - Since G is k-regular, m = k|S|. And since they touch N(S), $m \le k|N(S)|$.

Theorem (Hall'35)

A bipartite graph G with bipartitions X, Y has a matching that saturates X iff for all $S \subseteq X$, $|N(S)| \ge |S|$.

The Marriage Theorem (1917)

- ▶ In a group of *n* women and *n* men, if every woman is compatible with *k* men and every man compatible with *k* women, then a perfect matching must exist!
- ▶ For k > 0, every k-regular bipartite graph (i.e, every vertex has degree exactly k) has a perfect matching. Ex. Prove this!
- ▶ If G is a k-regular X, Y bipartite graph, then |X| = |Y|.
- If a matching saturates X then it saturates Y.
 - Let $S \subseteq X$. Let m = # edges from S to N(S).
 - Since G is k-regular, m = k|S|. And since they touch N(S), $m \le k|N(S)|$. Hence $k|S| \le k|N(S)|, k > 0$ completes proof.