
CS 105: DIC on Discrete Structures

Graph theory
Hall’s theorem and its applications

Guest Lecture: Rohit Gurjar

Lecture 35
Oct 24 2024

1



Topic 3: Graph theory

Basic definitions and concepts

Characterizations

1. Eulerian graphs: Using degrees of vertices.

2. Bipartite graphs: Using odd length cycles.

3. Connected components: Using cycles.

4. Maximum matchings: Using augmenting paths.

5. Perfect matchings in bipartite graphs: Using neighbour
sets. – Hall’s theorem
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Recap: Matchings

Definitions
▶ Matching: set of edges with no shared end-points.

▶ The vertices incident to edges in a matching are called
saturated. Others are unsaturated.

▶ Perfect matching: saturates every vertex in graph.

▶ Maximum matching: matching of maximum size (# edges).

▶ Maximal matching: cannot be enlarged by adding an edge.
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Recap: Matchings

Definitions
▶ Matching: set of edges with no shared end-points.

▶ The vertices incident to edges in a matching are called
saturated. Others are unsaturated.

▶ Perfect matching: saturates every vertex in graph.

▶ Maximum matching: matching of maximum size (# edges).

▶ Maximal matching: cannot be enlarged by adding an edge.

▶ M -alternating path: alternates between edges in/out of M .

▶ M -augmenting path: An M -alternating path whose
endpoints are unsaturated by M .
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Recap: Matchings

Definitions
▶ Matching: set of edges with no shared end-points.

▶ The vertices incident to edges in a matching are called
saturated. Others are unsaturated.

▶ Perfect matching: saturates every vertex in graph.

▶ Maximum matching: matching of maximum size (# edges).

▶ Maximal matching: cannot be enlarged by adding an edge.

▶ M -alternating path: alternates between edges in/out of M .

▶ M -augmenting path: An M -alternating path whose
endpoints are unsaturated by M .

Theorem

A matching M in G is a maximum matching iff G has no
M -augmenting path.
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Perfect matchings in bipartite graphs

▶ If there are n women and n men, and each woman is
compatible with exactly k men and each man compatible
with exactly k women, can they be perfectly matched?
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Perfect matchings in bipartite graphs

▶ If there are n women and n men, and each woman is
compatible with exactly k men and each man compatible
with exactly k women, can they be perfectly matched?

▶ If there are m jobs and n applicants, when can we find a
perfect matching where all m jobs are saturated?
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Perfect matchings in bipartite graphs

▶ Consider a bipartite graph with X, Y as partitions.

▶ If a matching M saturates X, then for every S ⊆ X,
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Perfect matchings in bipartite graphs

▶ Consider a bipartite graph with X, Y as partitions.

▶ If a matching M saturates X, then for every S ⊆ X, what
can we say?
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Perfect matchings in bipartite graphs

▶ Consider a bipartite graph with X, Y as partitions.

▶ If a matching M saturates X, then for every S ⊆ X, there
must exist at least |S| vertices that have neighbours in S.
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Perfect matchings in bipartite graphs

▶ Consider a bipartite graph with X, Y as partitions.

▶ If a matching M saturates X, then for every S ⊆ X, there
must exist at least |S| vertices that have neighbours in S.

▶ That is, ∀S ⊆ X, |N(S)| ≥ |S| (Hall’s Condition).
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Perfect matchings in bipartite graphs

▶ Consider a bipartite graph with X, Y as partitions.

▶ If a matching M saturates X, then for every S ⊆ X, there
must exist at least |S| vertices that have neighbours in S.

▶ That is, ∀S ⊆ X, |N(S)| ≥ |S| (Hall’s Condition). This is
a necessary condition, is it sufficient?
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Perfect matchings in bipartite graphs

▶ Consider a bipartite graph with X, Y as partitions.

▶ If a matching M saturates X, then for every S ⊆ X, there
must exist at least |S| vertices that have neighbours in S.

▶ That is, ∀S ⊆ X, |N(S)| ≥ |S| (Hall’s Condition). This is
a necessary condition, is it sufficient?

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

▶ For v ∈ V , its neighbour-set N(v) = {u ∈ V | (u, v) ∈ E}.
▶ For S ⊆ V , N(S) = {u ∈ V | (u, v) ∈ E for some v ∈ S}.

5



Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: ( =⇒ ) is straightforward:

▶ Let M be a matching.

▶ Then for any S ⊆ X, each vertex of S is matched to a
distinct vertex in N(S)

▶ So |N(S)| ≥ |S|.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

▶ Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

▶ Contrapositive:
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

▶ Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

▶ Contrapositive: If G does not have any matching that
saturates X, then there must exist S ⊆ X, |N(S)| < |S|.

5



Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

▶ Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

▶ Contrapositive: If G does not have any matching that
saturates X, then there must exist S ⊆ X, |N(S)| < |S|.

▶ If G does not have any matching that saturates X, then
surely any maximum matching of G does not saturate X.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

▶ Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

▶ Contrapositive: If G does not have any matching that
saturates X, then there must exist S ⊆ X, |N(S)| < |S|.

▶ If G does not have any matching that saturates X, then
surely any maximum matching of G does not saturate X.

▶ Let M be such a maximum matching. Then, we will
construct S ⊆ X s.t. |N(S)| < |S|.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Let u ∈ X be any unsaturated vertex of M .
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u

5



Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .
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Claim: M matches T with S \ {u} and |N(S)| = |T |.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u

Claim: M matches T with S \ {u} and |N(S)| = |T |.
▶ Every vertex of S \ {u} has an edge in M to a vertex in T .

5



Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .
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T

u

Claim: M matches T with S \ {u} and |N(S)| = |T |.
▶ Every vertex of S \ {u} has an edge in M to a vertex in T .

▶ Every vertex of T extends via M to a unique vertex of S.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

Claim: M matches T with S \ {u} and |N(S)| = |T |.
▶ Every vertex of S \ {u} has an edge in M to a vertex in T .

▶ Every vertex of T extends via M to a unique vertex of S.

▶ Thus, there is a bijection between T and S \ {u}.
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

Claim: M matches T with S \ {u} and |N(S)| = |T |.
▶ T ⊆ N(S) (from T any M -alternating path will reach S).
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

Claim: M matches T with S \ {u} and |N(S)| = |T |.
▶ T ⊆ N(S) (from T any M -alternating path will reach S).

▶ Conversely, if v ∈ S has edge to y ∈ Y \ T , then path from
u to v via M to y is an M -alternating path, implies y ∈ T .
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Characterizing perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

Claim: M matches T with S \ {u} and |N(S)| = |T |.
Thus, |N(S)| = |T | = |S| − 1 < |S| .
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

▶ In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

▶ What is the formal statement?
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

▶ In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

▶ For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

▶ In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

▶ For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

▶ If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
(why?)
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

▶ In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

▶ For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

▶ If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
▶ If a matching saturates X then it saturates Y .
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

▶ In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

▶ For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

▶ If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
▶ If a matching saturates X then it saturates Y .

▶ Can you now verify Hall’s condition?
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

▶ In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

▶ For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

▶ If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
▶ If a matching saturates X then it saturates Y .

▶ Let S ⊆ X. Let m = # edges from S to N(S).
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

▶ In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

▶ For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

▶ If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
▶ If a matching saturates X then it saturates Y .

▶ Let S ⊆ X. Let m = # edges from S to N(S).
▶ Since G is k-regular, m = k|S|. And since they touch N(S),

m ≤ k|N(S)|.
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

The Marriage Theorem (1917)

▶ In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

▶ For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

▶ If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
▶ If a matching saturates X then it saturates Y .

▶ Let S ⊆ X. Let m = # edges from S to N(S).
▶ Since G is k-regular, m = k|S|. And since they touch N(S),

m ≤ k|N(S)|. Hence k|S| ≤ k|N(S)|, k > 0 completes
proof.
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