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Last Topic: Graph theory

Basic definitions and concepts

▶ Basics: graphs, paths, cycles, walks, trails, . . .

▶ Cliques and independent sets.

▶ Graph representations, isomorphisms and automorphisms.

▶ Matchings: perfect, maximal and maximum.

Characterizations

1. Eulerian graphs: Using degrees of vertices.

2. Bipartite graphs: Using odd length cycles.

3. Connected components: Using cycles.

4. Maximum matchings: Using augmenting paths.

5. Perfect matchings in bipartite graphs: Using neighbour
sets. – Hall’s theorem
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Recap: Matchings

Definitions
▶ Matching: set of edges with no shared end-points.

▶ The vertices incident to edges in a matching are called
saturated. Others are unsaturated.

▶ Perfect matching: saturates every vertex in graph.

▶ Maximum matching: matching of maximum size (# edges).

▶ Maximal matching: cannot be enlarged by adding an edge.
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Definitions
▶ Matching: set of edges with no shared end-points.

▶ The vertices incident to edges in a matching are called
saturated. Others are unsaturated.

▶ Perfect matching: saturates every vertex in graph.

▶ Maximum matching: matching of maximum size (# edges).

▶ Maximal matching: cannot be enlarged by adding an edge.

▶ M -alternating path: alternates between edges in/out of M .

▶ M -augmenting path: An M -alternating path whose
endpoints are unsaturated by M .
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Recap: Matchings

Definitions
▶ Matching: set of edges with no shared end-points.

▶ The vertices incident to edges in a matching are called
saturated. Others are unsaturated.

▶ Perfect matching: saturates every vertex in graph.

▶ Maximum matching: matching of maximum size (# edges).

▶ Maximal matching: cannot be enlarged by adding an edge.

▶ M -alternating path: alternates between edges in/out of M .

▶ M -augmenting path: An M -alternating path whose
endpoints are unsaturated by M .

Theorem

A matching M in G is a maximum matching iff G has no
M -augmenting path.
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Recap: Perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

▶ For v ∈ V , its neighbour-set N(v) = {u ∈ V | (u, v) ∈ E}.
▶ For S ⊆ V , N(S) = {u ∈ V | (u, v) ∈ E for some v ∈ S}.
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Recap: Perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: ( =⇒ ) is straightforward:

▶ Let M be a matching.

▶ Then for any S ⊆ X, each vertex of S is matched to a
distinct vertex in N(S)

▶ So |N(S)| ≥ |S|.
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Recap: Perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)
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Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

▶ Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

▶ Contrapositive:

4



Recap: Perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

▶ Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

▶ Contrapositive: If G does not have any matching that
saturates X, then there must exist S ⊆ X, |N(S)| < |S|.
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Recap: Perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

▶ Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

▶ Contrapositive: If G does not have any matching that
saturates X, then there must exist S ⊆ X, |N(S)| < |S|.

▶ If G does not have any matching that saturates X, then
surely any maximum matching of G does not saturate X.
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Recap: Perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=)

▶ Converse: If for all S ⊆ X, |N(S)| ≥ |S|, then G has a
matching that saturates X.

▶ Contrapositive: If G does not have any matching that
saturates X, then there must exist S ⊆ X, |N(S)| < |S|.

▶ If G does not have any matching that saturates X, then
surely any maximum matching of G does not saturate X.

▶ Let M be such a maximum matching. Then, we will
construct S ⊆ X s.t. |N(S)| < |S|.
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Recap: Perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Let u ∈ X be any unsaturated vertex of M .

4



Recap: Perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u

4



Recap: Perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u

Claim: M matches T with S \ {u} and |N(S)| = |T |.
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Claim: M matches T with S \ {u} and |N(S)| = |T |.
▶ Every vertex of S \ {u} has an edge in M to a vertex in T .
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Recap: Perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u

Claim: M matches T with S \ {u} and |N(S)| = |T |.
▶ Every vertex of S \ {u} has an edge in M to a vertex in T .

▶ Every vertex of T extends via M to a unique vertex of S.

▶ Thus, there is a bijection between T and S \ {u}.
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Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u

Claim: M matches T with S \ {u} and |N(S)| = |T |.
▶ T ⊆ N(S) (from T any M -alternating path will reach S).

▶ Conversely, if v ∈ S has edge to y ∈ Y \ T , then path from
u to v via M to y is an M -alternating path, implies y ∈ T .
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Recap: Perfect matchings in bipartite graphs

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Proof: (⇐=) Thus, starting from a maximum matching M
which does not saturate X, we construct S ⊆ X, |N(S)| < |S|.
▶ Consider vertices Vu from u by M -alternating paths in G

and let S = Vu ∩X and T = Vu ∩ Y .

X

Y

S

T

u

Claim: M matches T with S \ {u} and |N(S)| = |T |.
Thus, |N(S)| = |T | = |S| − 1 < |S| .
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Application 1: The Marriage Theorem (1917)

▶ In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

▶ What is the formal statement?
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▶ If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
(why?)
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Applications of Hall’s condition

Theorem (Hall’35)

A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Application 1: The Marriage Theorem (1917)

▶ In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

▶ For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

▶ If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
▶ If a matching saturates X then it saturates Y .

▶ Can you now verify Hall’s condition?
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▶ Let S ⊆ X. Let m = # edges from S to N(S).
▶ Since G is k-regular, m = k|S|. And since they touch N(S),

m ≤ k|N(S)|.
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A bipartite graph G with bipartitions X,Y has a matching that
saturates X iff for all S ⊆ X, |N(S)| ≥ |S|.

Application 1: The Marriage Theorem (1917)

▶ In a group of n women and n men, if every woman is
compatible with k men and every man compatible with k
women, then a perfect matching must exist!

▶ For k > 0, every k-regular bipartite graph (i.e, every vertex
has degree exactly k) has a perfect matching. Ex. Prove
this!

▶ If G is a k-regular X,Y bipartite graph, then |X| = |Y |.
▶ If a matching saturates X then it saturates Y .

▶ Let S ⊆ X. Let m = # edges from S to N(S).
▶ Since G is k-regular, m = k|S|. And since they touch N(S),

m ≤ k|N(S)|. Hence k|S| ≤ k|N(S)|, k > 0 completes
proof.
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Let’s play a game

A two player game on a graph

1. Given a graph G, two players will alternatively choose
distinct vertices.

2. One player starts by choosing any vertex.

3. Subsequent move must be adjacent to preceding choice (of
other player).

4. Last player who can move wins.

6



Let’s play a game

A two player game on a graph

1. Given a graph G, two players will alternatively choose
distinct vertices.

2. One player starts by choosing any vertex.

3. Subsequent move must be adjacent to preceding choice (of
other player).

4. Last player who can move wins.

Two volunteers please. Who wants to start?

6



Let’s play a game

A two player game on a graph

1. Given a graph G, two players will alternatively choose
distinct vertices.

2. One player starts by choosing any vertex.

3. Subsequent move must be adjacent to preceding choice (of
other player).

4. Last player who can move wins.

Two volunteers please. Who wants to start?

X

Y

6



Let’s play a game

A two player game on a graph

1. Given a graph G, two players will alternatively choose
distinct vertices.

2. One player starts by choosing any vertex.

3. Subsequent move must be adjacent to preceding choice (of
other player).

4. Last player who can move wins.

Two volunteers please. Who wants to start?

Appl2: Theorem (H.W: Qn 3.1.18 from Douglas West)

If G has a perfect matching, then player 2 has a winning
strategy; otherwise, player 1 has a winning strategy.
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Application 3: Another game

Consider the graph of a road network in a city. When a
minister is visiting, the Chief of Police wants to place a
policeman to watch every road. What is the minimum number
of policemen required?
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Application 3: Another game

Consider the graph of a road network in a city. When a
minister is visiting, the Chief of Police wants to place a
policeman to watch every road. What is the minimum number
of policemen required?

Definition

A vertex cover of a graph G is a set Q ⊆ V that contains at least
one endpoint of every edge. Vertices in Q are said to cover E.
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Matchings and vertex covers

So, what is the link between matchings and vertex covers?

First, does a graph always have vertex cover?

Examples and properties of vertex covers

▶ The set of all vertices is always a vertex cover.

▶ The end-points of a maximal matching form a vertex cover.

▶ Size of any vertex cover vs size of any matching?

Questions

1. What is the size of the minimum vertex cover in Km, Km,n?

2. If ℓ is size of maximum matching and k is size of vertex
cover,

2.1 how are ℓ, k related?
2.2 Give an example of a graph where k ̸= ℓ

So, how do you compute min no. of policemen required, i.e., the
size of the minimum vertex covers?
Let’s consider bipartite graphs...
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size of the minimum vertex covers?
Let’s consider bipartite graphs...
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A min-max theorem

Theorem (Konig ’31, Egervary ’31)

If G is a bipartite graph, then the size of the maximum
matching of G equals the size of the minimum vertex cover of G.

Proof.
▶ Suffices to show that we can achieve a matching which has

size equal to min vertex cover.

▶ Take min vertex cover Q, partition into R = Q ∩X and
T = Q ∩ Y .

▶ Consider subgraphs H,H ′ induced by R ∪ (Y \ T ),
T ∪ (X \R).

▶ Show that H has a matching that saturates Q ∩X into
Y \ T , H ′ has a matching saturating T .

▶ Together this forms the desired matching (since H,H ′ are
disjoint).
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