
CS 105: DIC on Discrete Structures

Graph theory
Stable matchings, and the end.

Lecture 39
Nov 05 2024

1



Topic 3: Graph theory

Topics in Graph theory

1. Basics concepts and definitions.

2. Eulerian graphs: Using degrees of vertices.

3. Bipartite graphs: Using odd length cycles.

4. Connected components: Using cycles.

5. Maximum matchings: Using augmenting paths.

6. Perfect matchings in bipartite graphs: Using neighbour
sets. – Hall’s theorem

7. Applications of Hall’s theorem: Minimum vertex covers –
Konig-Egervary’s theorem

8. Stable matchings...

2



Stable matchings

Boys Girls

1

2

3

4

5

A

B

C

D

E

3



Stable matchings

Boys Girls

1

2

3

4

5

C > B > E > A > D

ABECD

DCBAE

ACDBE

ABDEC

A : 35214

B : 52143

C : 43512

D : 12345

E : 23415

3



Stable matchings

Boys Girls

1

2

3

4

5

C > B > E > A > D

ABECD

DCBAE

ACDBE

ABDEC

A : 35214

B : 52143

C : 43512

D : 12345

E : 23415

▶ Let us try a “greedy” marriage strategy for boys.

3



Stable matchings

Boys Girls

1

2

3

4

5

C > B > E > A > D

ABECD

DCBAE

ACDBE

ABDEC

A : 35214

B : 52143

C : 43512

D : 12345

E : 23415

▶ Let us try a “greedy” marriage strategy for boys.

3



Stable matchings

Boys Girls

1

2

3

4

5

C > B > E > A > D

ABECD

DCBAE

ACDBE

ABDEC

A : 35214

B : 52143

C : 43512

D : 12345

E : 23415

▶ Let us try a “greedy” marriage strategy for boys.

3



Stable matchings

Boys Girls

1

2

3

4

5

C > B > E > A > D

ABECD

DCBAE

ACDBE

ABDEC

A : 35214

B : 52143

C : 43512

D : 12345

E : 23415

▶ Let us try a “greedy” marriage strategy for boys.

▶ Danger!

3



Stable matchings

Boys Girls

1

2

3

4

5

C > B > E > A > D

ABECD

DCBAE

ACDBE

ABDEC

A : 35214

B : 52143

C : 43512

D : 12345

E : 23415

▶ Let us try a “greedy” marriage strategy for boys.

▶ Danger! 4 prefers C to B and C prefers 4 to 1. Divorce!

3



Stable matchings

Boys Girls

1

2

3

4

5

C > B > E > A > D

ABECD

DCBAE

ACDBE

ABDEC

A : 35214

B : 52143

C : 43512

D : 12345

E : 23415

▶ Let us try a “greedy” marriage strategy for boys.

▶ Danger! 4 prefers C to B and C prefers 4 to 1. Divorce!

▶ Qn: Can you match everyone without such Rogue couples?!

3



More than just a funny puzzle

▶ College admissions: Original Gale and Shapley paper, 1962.

▶ Matching hospitals and residents.

▶ Matching dancing partners.

▶ Matching students with jobs.

▶ Matching (PG) TAs with courses.

▶ JEE algorithm...

4



More than just a funny puzzle

▶ College admissions: Original Gale and Shapley paper, 1962.

▶ Matching hospitals and residents.

▶ Matching dancing partners.

▶ Matching students with jobs.

▶ Matching (PG) TAs with courses.

▶ JEE algorithm...

4



Stable matchings

Definition

Given a matching M in a graph with preference lists of nodes.

▶ Unstable pair: Two vertices x, y such that x prefers y to its
assigned vertex and vice versa.

▶ x, y would be happier by eloping.

▶ Qn: Find a perfect matching with no unstable pairs. Such
a matching is called a Stable Matching.

5



Roommates Problem

A : BCD

B : CAD

C : ABD

D : ABC

A B

C

D

▶ What can you observe from this?

6



Roommates Problem

A : BCD

B : CAD

C : ABD

D : ABC

A B

C

D

▶ What can you observe from this?

▶ Everybody hates D.

6



Roommates Problem

A : BCD

B : CAD

C : ABD

D : ABC

A B

C

D

▶ What can you observe from this?

▶ Stable matchings don’t always exist.

6



Roommates Problem

A : BCD

B : CAD

C : ABD

D : ABC

A B

C

D

▶ What can you observe from this?

▶ Stable matchings don’t always exist.

▶ So, do they exist for bipartite graphs and how can we prove
this?

6



The proposal algorithm

Given: bipartite graph, preference list for n men/women

▶ 8am: Every man goes to first woman on his list not yet
crossed off, and proposes to her!

7



The proposal algorithm

Given: bipartite graph, preference list for n men/women

▶ 8am: Every man goes to first woman on his list not yet
crossed off, and proposes to her!

▶ 6pm: Every woman says “maybe” to the man she likes best
among the proposals, and says “never” to all others!

7



The proposal algorithm

Given: bipartite graph, preference list for n men/women

▶ 8am: Every man goes to first woman on his list not yet
crossed off, and proposes to her!

▶ 6pm: Every woman says “maybe” to the man she likes best
among the proposals, and says “never” to all others!

▶ 10pm: Each rejected suitor crosses off woman from his list.

7



The proposal algorithm

Given: bipartite graph, preference list for n men/women

▶ 8am: Every man goes to first woman on his list not yet
crossed off, and proposes to her!

▶ 6pm: Every woman says “maybe” to the man she likes best
among the proposals, and says “never” to all others!

▶ 10pm: Each rejected suitor crosses off woman from his list.

The above loop is repeated every day until there are no more
rejected suitors. On that day, the women says “yes” to her
“maybe” guy!

7



The proposal algorithm

Given: bipartite graph, preference list for n men/women

▶ 8am: Every man goes to first woman on his list not yet
crossed off, and proposes to her!

▶ 6pm: Every woman says “maybe” to the man she likes best
among the proposals, and says “never” to all others!

▶ 10pm: Each rejected suitor crosses off woman from his list.

The above loop is repeated every day until there are no more
rejected suitors. On that day, the women says “yes” to her
“maybe” guy!

▶ Does this algorithm terminate?

▶ If yes, does it produce a stable matching when it
terminates?

7



Termination and Correctness of the proposal algo

▶ Try out the algo on the example.

8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.

8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
▶ The algo terminates within n2 days.

8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
▶ The algo terminates within n2 days.
▶ For each day (except last), at least one woman is crossed off

some man’s list.
▶ As there are n men and each has list of size n, algo must

terminate in n2 days.

8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.

2. If W says maybe to M on kth day, then on every
subsequent day she says maybe to someone whom she likes
at least as much as M .

8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.

2. If W says maybe to M on kth day, then on every
subsequent day she says maybe to someone whom she likes
at least as much as M .

3. The algo terminates with a perfect matching.

8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.

2. If W says maybe to M on kth day, then on every
subsequent day she says maybe to someone whom she likes
at least as much as M .

3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.

2. If W says maybe to M on kth day, then on every
subsequent day she says maybe to someone whom she likes
at least as much as M .

3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

▶ If (M,W ) is pair in current matching, s.t., M prefers W ′.

8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.

2. If W says maybe to M on kth day, then on every
subsequent day she says maybe to someone whom she likes
at least as much as M .

3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

▶ If (M,W ) is pair in current matching, s.t., M prefers W ′.

▶ We will show that W ′ prefers some other M ′ and hence no
unstable pair.

8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.

2. If W says maybe to M on kth day, then on every
subsequent day she says maybe to someone whom she likes
at least as much as M .

3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

▶ If (M,W ) is pair in current matching, s.t., M prefers W ′.

▶ We will show that W ′ prefers some other M ′ and hence no
unstable pair.
▶ Since W ′ > W for M , he must have proposed to W ′ before

proposing to W .

8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.

2. If W says maybe to M on kth day, then on every
subsequent day she says maybe to someone whom she likes
at least as much as M .

3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

▶ If (M,W ) is pair in current matching, s.t., M prefers W ′.

▶ We will show that W ′ prefers some other M ′ and hence no
unstable pair.
▶ Since W ′ > W for M , he must have proposed to W ′ before

proposing to W .
▶ W ′ rejected him only because she preferred some M ′′ to M .

8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.

2. If W says maybe to M on kth day, then on every
subsequent day she says maybe to someone whom she likes
at least as much as M .

3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

▶ If (M,W ) is pair in current matching, s.t., M prefers W ′.
▶ We will show that W ′ prefers some other M ′ and hence no

unstable pair.
▶ Since W ′ > W for M , he must have proposed to W ′ before

proposing to W .
▶ W ′ rejected him only because she preferred some M ′′ to M .
▶ By Lemma 2, she likes her final partner at least as much as

M ′′, so better than M .
8



Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.

2. If W says maybe to M on kth day, then on every
subsequent day she says maybe to someone whom she likes
at least as much as M .

3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

▶ If (M,W ) is pair in current matching, s.t., M prefers W ′.

▶ We will show that W ′ prefers some other M ′ and hence no
unstable pair.

▶ Thus no man can be part of an unstable pair, implies
stable matching.

8



The proposal algorithm: who does better?

Features of this proposal algorithm

▶ Who is happier with the result? Men or women?

▶ Can men do any better?

▶ Can the women do any better?

▶ Define an optimal woman for a man as the best he can get
under any stable matching. A matching is male-optimal if
every man is matched to his optimal woman.

▶ Define an optimal man for a woman as the best she can get
under any stable matching.

Theorem (H.W.: Prove this!)

The male-proposal algorithm is male-optimal (and
“woman-pessimal”).

Conclusion: Propose first!

9



The proposal algorithm: who does better?

Features of this proposal algorithm

▶ Who is happier with the result? Men or women?

▶ Can men do any better?

▶ Can the women do any better?

▶ Define an optimal woman for a man as the best he can get
under any stable matching. A matching is male-optimal if
every man is matched to his optimal woman.

▶ Define an optimal man for a woman as the best she can get
under any stable matching.

Theorem (H.W.: Prove this!)

The male-proposal algorithm is male-optimal (and
“woman-pessimal”).

Conclusion: Propose first!

9



The proposal algorithm: who does better?

Features of this proposal algorithm

▶ Who is happier with the result? Men or women?

▶ Can men do any better?

▶ Can the women do any better?

▶ Define an optimal woman for a man as the best he can get
under any stable matching. A matching is male-optimal if
every man is matched to his optimal woman.

▶ Define an optimal man for a woman as the best she can get
under any stable matching.

Theorem (H.W.: Prove this!)

The male-proposal algorithm is male-optimal (and
“woman-pessimal”).

Conclusion: Propose first!

9



The proposal algorithm: who does better?

Features of this proposal algorithm

▶ Who is happier with the result? Men or women?

▶ Can men do any better?

▶ Can the women do any better?

▶ Define an optimal woman for a man as the best he can get
under any stable matching. A matching is male-optimal if
every man is matched to his optimal woman.

▶ Define an optimal man for a woman as the best she can get
under any stable matching.

Theorem (H.W.: Prove this!)

The male-proposal algorithm is male-optimal (and
“woman-pessimal”).

Conclusion: Propose first!

9



The proposal algorithm: who does better?

Features of this proposal algorithm

▶ Who is happier with the result? Men or women?

▶ Can men do any better?

▶ Can the women do any better?

▶ Define an optimal woman for a man as the best he can get
under any stable matching. A matching is male-optimal if
every man is matched to his optimal woman.

▶ Define an optimal man for a woman as the best she can get
under any stable matching.

Theorem (H.W.: Prove this!)

The male-proposal algorithm is male-optimal (and
“woman-pessimal”).

Conclusion: Propose first!

9



The proposal algorithm: who does better?

Features of this proposal algorithm

▶ Who is happier with the result? Men or women?

▶ Can men do any better?

▶ Can the women do any better?

▶ Define an optimal woman for a man as the best he can get
under any stable matching. A matching is male-optimal if
every man is matched to his optimal woman.

▶ Define an optimal man for a woman as the best she can get
under any stable matching.

Theorem (H.W.: Prove this!)

The male-proposal algorithm is male-optimal (and
“woman-pessimal”).

Conclusion: Propose first!

9



The proposal algorithm: who does better?

Features of this proposal algorithm

▶ Who is happier with the result? Men or women?

▶ Can men do any better?

▶ Can the women do any better?

▶ Define an optimal woman for a man as the best he can get
under any stable matching. A matching is male-optimal if
every man is matched to his optimal woman.

▶ Define an optimal man for a woman as the best she can get
under any stable matching.

Theorem (H.W.: Prove this!)

The male-proposal algorithm is male-optimal (and
“woman-pessimal”).

Conclusion: Propose first!

9



Further reading

▶ Many questions, rich theory.

▶ How many stable marriages are possible?

▶ Can you do better by lying? Boys - no!, Girls - yes!

▶ What if there are brother-sisters (who should not be
matched!)?

▶ D. Gale and L.S. Shapley, College Admissions and the
Stability of Marriage, American Mathematical Monthly
69(1962), pp. 9-14.

▶ D. Gusfield and R.W. Irving, The Stable Marriage
Problem: Structure and Algorithms, MIT Press, 1989.

The 2012 Nobel prize in Economics to Shapley and Roth: ”for
the theory of stable allocations and the practice of market
design”.

10



Further reading

▶ Many questions, rich theory.

▶ How many stable marriages are possible?

▶ Can you do better by lying? Boys - no!, Girls - yes!

▶ What if there are brother-sisters (who should not be
matched!)?

▶ D. Gale and L.S. Shapley, College Admissions and the
Stability of Marriage, American Mathematical Monthly
69(1962), pp. 9-14.

▶ D. Gusfield and R.W. Irving, The Stable Marriage
Problem: Structure and Algorithms, MIT Press, 1989.

The 2012 Nobel prize in Economics to Shapley and Roth: ”for
the theory of stable allocations and the practice of market
design”.

10



Summary

What we covered in this course

1. Mathematical proofs and basic reasoning

2. Basic discrete structures

3. Counting and combinatorics

4. Introduction to graph theory

11



Summary

▶ Part 1: Mathematical proofs and reasoning

▶ How to reason and write proofs formally
▶ Propositions, predicates
▶ Proof techniques: contradiction, contrapositive
▶ Induction: strong induction, well-ordering principle

▶ Applications: Seen throughout this course and most future
courses!

▶ Part 2: Basic discrete structures

▶ Sets: finite and infinite sets, countable and uncountable sets
▶ Functions: bijections (from e.g., N× N → N), injections and

surjections, Cantor’s diagonalization technique
▶ Relations: equivalence relations and partitions; partial

orders, chains, anti-chains, lattices

▶ Applications: showing impossibility theorems for CS,
parallel task scheduling algorithms.

12



Summary

▶ Part 1: Mathematical proofs and reasoning
▶ How to reason and write proofs formally
▶ Propositions, predicates
▶ Proof techniques: contradiction, contrapositive
▶ Induction: strong induction, well-ordering principle

▶ Applications: Seen throughout this course and most future
courses!

▶ Part 2: Basic discrete structures

▶ Sets: finite and infinite sets, countable and uncountable sets
▶ Functions: bijections (from e.g., N× N → N), injections and

surjections, Cantor’s diagonalization technique
▶ Relations: equivalence relations and partitions; partial

orders, chains, anti-chains, lattices

▶ Applications: showing impossibility theorems for CS,
parallel task scheduling algorithms.

12



Summary

▶ Part 1: Mathematical proofs and reasoning
▶ How to reason and write proofs formally
▶ Propositions, predicates
▶ Proof techniques: contradiction, contrapositive
▶ Induction: strong induction, well-ordering principle
▶ Applications: Seen throughout this course and most future

courses!

▶ Part 2: Basic discrete structures

▶ Sets: finite and infinite sets, countable and uncountable sets
▶ Functions: bijections (from e.g., N× N → N), injections and

surjections, Cantor’s diagonalization technique
▶ Relations: equivalence relations and partitions; partial

orders, chains, anti-chains, lattices

▶ Applications: showing impossibility theorems for CS,
parallel task scheduling algorithms.

12



Summary

▶ Part 1: Mathematical proofs and reasoning
▶ How to reason and write proofs formally
▶ Propositions, predicates
▶ Proof techniques: contradiction, contrapositive
▶ Induction: strong induction, well-ordering principle
▶ Applications: Seen throughout this course and most future

courses!

▶ Part 2: Basic discrete structures
▶ Sets: finite and infinite sets, countable and uncountable sets
▶ Functions: bijections (from e.g., N× N → N), injections and

surjections, Cantor’s diagonalization technique
▶ Relations: equivalence relations and partitions; partial

orders, chains, anti-chains, lattices

▶ Applications: showing impossibility theorems for CS,
parallel task scheduling algorithms.

12



Summary

▶ Part 1: Mathematical proofs and reasoning
▶ How to reason and write proofs formally
▶ Propositions, predicates
▶ Proof techniques: contradiction, contrapositive
▶ Induction: strong induction, well-ordering principle
▶ Applications: Seen throughout this course and most future

courses!

▶ Part 2: Basic discrete structures
▶ Sets: finite and infinite sets, countable and uncountable sets
▶ Functions: bijections (from e.g., N× N → N), injections and

surjections, Cantor’s diagonalization technique
▶ Relations: equivalence relations and partitions; partial

orders, chains, anti-chains, lattices
▶ Applications: showing impossibility theorems for CS,

parallel task scheduling algorithms.

12



Summary Contd.

▶ Part 3: Counting and Combinatorics

▶ Basic counting principles, double counting
▶ Binomial theorem, permutations and combinations,

Estimating n!
▶ Recurrence relations and generating functions
▶ Principle of Inclusion-Exclusion (PIE) and its applications.
▶ Pigeon-Hole Principle (PHP) and its applications.
▶ Some special numbers and sequences: Fibonacci, Catalan
▶ Introduction to Ramsey theory

▶ Applications: Bounding the complexity of algorithms,
proving existence of structures.

13



Summary Contd.

▶ Part 3: Counting and Combinatorics
▶ Basic counting principles, double counting
▶ Binomial theorem, permutations and combinations,

Estimating n!
▶ Recurrence relations and generating functions
▶ Principle of Inclusion-Exclusion (PIE) and its applications.
▶ Pigeon-Hole Principle (PHP) and its applications.
▶ Some special numbers and sequences: Fibonacci, Catalan
▶ Introduction to Ramsey theory

▶ Applications: Bounding the complexity of algorithms,
proving existence of structures.

13



Summary Contd.

▶ Part 3: Counting and Combinatorics
▶ Basic counting principles, double counting
▶ Binomial theorem, permutations and combinations,

Estimating n!
▶ Recurrence relations and generating functions
▶ Principle of Inclusion-Exclusion (PIE) and its applications.
▶ Pigeon-Hole Principle (PHP) and its applications.
▶ Some special numbers and sequences: Fibonacci, Catalan
▶ Introduction to Ramsey theory
▶ Applications: Bounding the complexity of algorithms,

proving existence of structures.

13



Summary (Contd.)

Part 4: Topics in Graph theory

▶ Basics: graphs, paths, cycles, walks, trails, . . .

▶ Graph representations, isomorphisms and automorphisms.

▶ Matchings: maximal, maximum, perfect and stable.

14



Summary (Contd.)

Part 4: Topics in Graph theory

▶ Basics: graphs, paths, cycles, walks, trails, . . .

▶ Graph representations, isomorphisms and automorphisms.

▶ Matchings: maximal, maximum, perfect and stable.

Graph theory: Characterizations

1. Eulerian graphs: Using degrees of vertices.

2. Bipartite graphs: Using odd length cycles.

3. Connected components: Using cycles.

4. Maximum matchings: Using augmenting paths.

5. Perfect matchings in bipartite graphs: Using neighbour
sets. – Hall’s theorem

6. Maximum matchings in bipartite graphs: Minimum vertex
covers. – Konig-Egervary’s theorem

7. Stable matchings... and the Gale Shapley Algo
14



Beyond this course

Topics we didn’t cover in discrete structures

▶ Number theory and cryptographic applications

▶ Discrete Probability Theory

▶ Symbolic logic and its applications

▶ Finite Automata Theory and transition systems

Many core courses and electives to choose from

▶ Core: CS 228 (Logic), CS213 (DSA), CS215 (DAI), CS 218
(DAA), CS 310 (Automata)

▶ Electives: Crytpo, Graph Theory, Game theory,
Linear/Convex Optimization, Automated Reasoning,
Applied Algo, Geom Algo, Combinatorics, Verification of
Programs, Program Analysis, Petri nets, Special topics in
Automata and Logics, Quantitative Verification, ...

15



Beyond this course

Topics we didn’t cover in discrete structures

▶ Number theory and cryptographic applications

▶ Discrete Probability Theory

▶ Symbolic logic and its applications

▶ Finite Automata Theory and transition systems

Many core courses and electives to choose from

▶ Core: CS 228 (Logic), CS213 (DSA), CS215 (DAI), CS 218
(DAA), CS 310 (Automata)

▶ Electives: Crytpo, Graph Theory, Game theory,
Linear/Convex Optimization, Automated Reasoning,
Applied Algo, Geom Algo, Combinatorics, Verification of
Programs, Program Analysis, Petri nets, Special topics in
Automata and Logics, Quantitative Verification, ...

15



Beyond this course

Topics we didn’t cover in discrete structures

▶ Number theory and cryptographic applications

▶ Discrete Probability Theory

▶ Symbolic logic and its applications

▶ Finite Automata Theory and transition systems

Many core courses and electives to choose from

▶ Core: CS 228 (Logic), CS213 (DSA), CS215 (DAI), CS 218
(DAA), CS 310 (Automata)

▶ Electives: Crytpo, Graph Theory, Game theory,
Linear/Convex Optimization, Automated Reasoning,
Applied Algo, Geom Algo, Combinatorics, Verification of
Programs, Program Analysis, Petri nets, Special topics in
Automata and Logics, Quantitative Verification, ...

15



Beyond this course

Topics we didn’t cover in discrete structures

▶ Number theory and cryptographic applications

▶ Discrete Probability Theory

▶ Symbolic logic and its applications

▶ Finite Automata Theory and transition systems

Many core courses and electives to choose from

▶ Core: CS 228 (Logic), CS213 (DSA), CS215 (DAI), CS 218
(DAA), CS 310 (Automata)

▶ Electives: Crytpo, Graph Theory, Game theory,
Linear/Convex Optimization, Automated Reasoning,
Applied Algo, Geom Algo, Combinatorics, Verification of
Programs, Program Analysis, Petri nets, Special topics in
Automata and Logics, Quantitative Verification, ...

15



Beyond this course

Topics we didn’t cover in discrete structures

▶ Number theory and cryptographic applications

▶ Discrete Probability Theory

▶ Symbolic logic and its applications

▶ Finite Automata Theory and transition systems

Many core courses and electives to choose from

▶ Core: CS 228 (Logic), CS213 (DSA), CS215 (DAI), CS 218
(DAA), CS 310 (Automata)

▶ Electives: Crytpo, Graph Theory, Game theory,
Linear/Convex Optimization, Automated Reasoning,
Applied Algo, Geom Algo, Combinatorics, Verification of
Programs, Program Analysis, Petri nets, Special topics in
Automata and Logics, Quantitative Verification, ...

15



Beyond this course

Topics we didn’t cover in discrete structures

▶ Number theory and cryptographic applications

▶ Discrete Probability Theory

▶ Symbolic logic and its applications

▶ Finite Automata Theory and transition systems

Many core courses and electives to choose from

▶ Core: CS 228 (Logic), CS213 (DSA), CS215 (DAI), CS 218
(DAA), CS 310 (Automata)

▶ Electives: Crytpo, Graph Theory, Game theory,
Linear/Convex Optimization, Automated Reasoning,
Applied Algo, Geom Algo, Combinatorics, Verification of
Programs, Program Analysis, Petri nets, Special topics in
Automata and Logics, Quantitative Verification, ...

15


