CS 207: Discrete Structures

Lecture 15 – Counting and Combinatorics
Recurrence relations

Aug 18 2016
Last three classes

Basic counting techniques and applications

1. Sum and product, bijection, double counting principles
2. Counting no. of (ordered) subsets, relations...
3. Handshake lemma

4. Binomial coefficients and binomial theorem
5. Pascal’s triangle and its applications
6. Permutations and combinations with/without repetitions
7. Estimating $n!$ and Stirling’s approximation
Last three classes

Basic counting techniques and applications

1. Sum and product, bijection, double counting principles
2. Counting no. of (ordered) subsets, relations...
3. Handshake lemma
4. Binomial coefficients and binomial theorem
5. Pascal’s triangle and its applications
6. Permutations and combinations with/without repetitions
7. Estimating $n!$ and Stirling’s approximation
Recall: No. of subsets of a set of n elements

How many subsets does a set A of n elements have?

- **Induction**
- **Product principle**: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (n-times).
- **Bijection**: between $P(X)$ and n-length $\{0, 1\}$-sequences.
- **Sum principle**: Subsets of size 0 + subsets of size 1 + \ldots + subsets of size $n = \text{Total number of subsets.}$
Recall: No. of subsets of a set of n elements

How many subsets does a set A of n elements have?

- **Induction**
- **Product principle**: two choices for each element, hence $2 \cdot 2 \cdots 2 \cdot 2$ (n-times).
- **Bijection**: between $\mathcal{P}(X)$ and n-length $\{0, 1\}$-sequences.
- **Sum principle**: Subsets of size 0 + subsets of size 1 + \ldots + subsets of size $n = \text{Total number of subsets}.
- **Recurrence**: $F(n) = 2 \cdot F(n - 1), F(0) = 1$.

Next: Recurrence relations and generating functions
Recall: No. of subsets of a set of n elements

How many subsets does a set A of n elements have?

- **Induction**
- **Product principle**: two choices for each element, hence $2 \cdot 2 \cdot \cdots \cdot 2 \cdot 2$ (n-times).
- **Bijection**: between $\mathcal{P}(X)$ and n-length $\{0, 1\}$-sequences.
- **Sum principle**: Subsets of size 0 + subsets of size 1 + \ldots + subsets of size $n = \text{Total number of subsets}$.
- **Recurrence**: $F(n) = 2 \cdot F(n-1)$, $F(0) = 1$.
Recall: No. of subsets of a set of n elements

How many subsets does a set A of n elements have?

- **Induction**
- **Product principle:** two choices for each element, hence $2 \cdot 2 \cdot \ldots \cdot 2 \cdot 2$ (n-times).
- **Bijection:** between $\mathcal{P}(X)$ and n-length $\{0, 1\}$-sequences.
- **Sum principle:** Subsets of size 0 + subsets of size 1 + … + subsets of size $n = \text{Total number of subsets.}$
- **Recurrence:** $F(n) = 2 \cdot F(n - 1), F(0) = 1.$

But how do you solve it?
Another example of recurrence: The Fibonacci Sequence

- Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, \ldots

- Recurrence relation: $u_n = u_{n-1} + u_{n-2}$ where $u_1 = u_0 = 1$

- But rabbits die!

- Consider $u_n = u_{n-1} + u_{n-2} - u_{n-3}$ where $u_2 = 2$, $u_1 = u_0 = 1$
Another example of recurrence: The Fibonacci Sequence

- Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, …
- Recurrence relation: $u_n = u_{n-1} + u_{n-2}$ where $u_1 = u_0 = 1$
Another example of recurrence: The Fibonacci Sequence

- Fibonacci sequence: $1, 1, 2, 3, 5, 8, 13, 21, \ldots$
- Recurrence relation: $u_n = u_{n-1} + u_{n-2}$ where $u_1 = u_0 = 1$
- But rabbits die!
Another example of recurrence: The Fibonacci Sequence

- Fibonacci sequence: \(1, 1, 2, 3, 5, 8, 13, 21, \ldots\)
- Recurrence relation: \(u_n = u_{n-1} + u_{n-2}\) where \(u_1 = u_0 = 1\)
- But rabbits die!
- Consider \(u_n = u_{n-1} + u_{n-2} - u_{n-3}\) where \(u_2 = 2, u_1 = u_0 = 1\)
A recurrence relation for a sequence is an equation that expresses its n^{th} term using one or more of the previous terms of the sequence.

A linear recurrence relation is of the form

$$u_n = a_{k-1}u_{n-1} + \ldots + a_1u_{n-k+1} + a_0u_{n-k}$$

where $a_0, \ldots, a_{k-1} \in \mathbb{R}, k \in \mathbb{N}$ are constants.

k is called the degree/depth of the sequence.

The first few (e.g., k elements u_0, \ldots, u_{k-1}) are initial conditions and they determine the whole sequence.
Some more examples of recurrences

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many bit strings of length n are there that do not have two consecutive 0’s?</td>
</tr>
<tr>
<td>- Find a recurrence relation for this</td>
</tr>
<tr>
<td>- Give the initial conditions</td>
</tr>
<tr>
<td>- How many such bit strings are there of length 7?</td>
</tr>
</tbody>
</table>

In general, let $C(n)$ be the number of ways of doing this.
Some more examples of recurrences

How many bit strings of length \(n \) are there that do not have two consecutive 0’s?

- Find a recurrence relation for this
- Give the initial conditions
- How many such bit strings are there of length 7?

How many ways are there to bracket a sum of \(n \) terms so that it can be computed by adding two numbers at a time?
Some more examples of recurrences

How many bit strings of length \(n \) are there that do not have two consecutive 0’s?

- Find a recurrence relation for this
- Give the initial conditions
- How many such bit strings are there of length 7?

How many ways are there to bracket a sum of \(n \) terms so that it can be computed by adding two numbers at a time?

- Example: \(n = 3 \) : \(((a + b) + c), (a + (b + c))\)
Some more examples of recurrences

<table>
<thead>
<tr>
<th>How many bit strings of length n are there that do not have two consecutive 0’s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Find a recurrence relation for this</td>
</tr>
<tr>
<td>▶ Give the initial conditions</td>
</tr>
<tr>
<td>▶ How many such bit strings are there of length 7?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Example: $n = 3$: $((a + b) + c), (a + (b + c))$</td>
</tr>
<tr>
<td>▶ $n = 4$: $(((a+b)+c)+d), ((a+b)+(c+d)), ((a+(b+c))+d), ...$</td>
</tr>
</tbody>
</table>
Some more examples of recurrences

How many bit strings of length n are there that do not have two consecutive 0’s?

- Find a recurrence relation for this
- Give the initial conditions
- How many such bit strings are there of length 7?

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

- Example: $n = 3$: $((a + b) + c), (a + (b + c))$
- $n = 4$: $(((a+b)+c)+d), ((a+b)+(c+d)), ((a+(b+c))+d), ...$
 In general, let $C(n)$ be the number of ways of doing this.
Some more examples of recurrences

How many ways are there to bracket a sum of \(n \) terms so that it can be computed by adding two numbers at a time?

- Let \(C(n) \) be the number of ways of doing this.
- If outermost bracketing \((A + B)\) appears between \(x_k \) and \(x_{k+1} \), then there are \(C(k) \cdot C(n - k) \) ways of bracketing it.

Thus, \(C(n) = \sum_{i=1}^{n-1} C(i) \cdot C(n - i) \) for \(n > 1 \).

Initial conditions are \(C(0) = C(1) = 1 \).

This sequence are called Catalan numbers...
Some more examples of recurrences

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

- Let $C(n)$ be the number of ways of doing this.
- If outermost bracketing $(A + B)$ appears between x_k and x_{k+1}, then there are $C(k) \cdot C(n - k)$ ways of bracketing it.
- k can be anything from 1 till $n - 1$
Some more examples of recurrences

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

- Let $C(n)$ be the number of ways of doing this.
- If outermost bracketing $(A + B)$ appears between x_k and x_{k+1}, then there are $C(k) \cdot C(n - k)$ ways of bracketing it.
- k can be anything from 1 till $n - 1$
- Thus, $C(n) = \sum_{i=1}^{n-1} C(i)C(n - i)$ for $n > 1$
Some more examples of recurrences

How many ways are there to bracket a sum of n terms so that it can be computed by adding two numbers at a time?

- Let $C(n)$ be the number of ways of doing this.
- If outermost bracketing $(A + B)$ appears between x_k and x_{k+1}, then there are $C(k) \cdot C(n - k)$ ways of bracketing it.
- k can be anything from 1 till $n - 1$
- Thus, $C(n) = \sum_{i=1}^{n-1} C(i)C(n - i)$ for $n > 1$

- Initial conditions are $C(0) = C(1) = 1$.
- This sequence are called Catalan numbers...

How do we solve such recurrences? We start with the Fibonacci sequence.
An aside: find the Fibonacci sequence!

\[
F(n) = F(n - 1) + F(n - 2).
\]

1, 1, 2, 3, 5, 8, 13,

Can you observe the sum of which terms in the Pascal’s triangle gives rise to the terms of the Fibonacci sequence?