CS 207: Discrete Structures

Lecture 19 – Counting and Combinatorics
Pigeon-Hole Principle

Sept 01 2016
Topics in Combinatorics

Basic counting techniques and applications

1. Basic counting techniques, double counting
2. Binomial theorem, permutations and combinations, Estimating $n!$
3. Recurrence relations and generating functions
4. Principle of Inclusion-Exclusion (PIE) and its applications.
Basic counting techniques and applications

1. Basic counting techniques, double counting
2. Binomial theorem, permutations and combinations, Estimating $n!$
3. Recurrence relations and generating functions
4. Principle of Inclusion-Exclusion (PIE) and its applications.
 ▶ Counting the number of surjections on $[n]$.
 ▶ Combinatorial proof of PIE
 ▶ Number of derangements $\sim \frac{1}{e}$.

Topics in Combinatorics
Theorem: Principle of Inclusion-Exclusion (PIE)

Let A_1, A_2, \ldots, A_n be finite sets. Then,

$$|A_1 \cup \ldots \cup A_n| = \sum_{1 \leq i \leq n} |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cap A_j| + \sum_{1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n+1}|A_1 \cap \ldots \cap A_n|$$
This lecture

Pigeon-Hole Principle (PHP) and its applications

A simple formulation

Let \(k \in \mathbb{N} \). If \(k + 1 \) (or more) objects are to be placed in \(k \) boxes, then at least one box will have 2 (or more) objects.

How do you prove it?

A simple corollary

▶ Can a function from a set of \(k + 1 \) or more elements to a set with \(k \) elements be injective?
This lecture

Pigeon-Hole Principle (PHP) and its applications

A simple formulation
Let $k \in \mathbb{N}$. If $k + 1$ (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.
Pigeon-Hole Principle (PHP) and its applications

A simple formulation
Let $k \in \mathbb{N}$. If $k + 1$ (or more) objects are to be placed in k boxes, then at least one box will have 2 (or more) objects.

How do you prove it?
This lecture

Pigeon-Hole Principle (PHP) and its applications

A simple formulation
Let \(k \in \mathbb{N} \). If \(k + 1 \) (or more) objects are to be placed in \(k \) boxes, then at least one box will have \(2 \) (or more) objects.

How do you prove it?
A simple corollary

- Can a function from a set of \(k + 1 \) or more elements to a set with \(k \) elements be injective?
Another simple application

For every \(n \in \mathbb{Z}^+ \), there exists a multiple of \(n \) whose decimal expansion only has 0's and 1's.
Pigeon-Hole Principle (PHP)

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

- Consider $n + 1$ integers $k_1 = 1$, $k_2 = 11$, $k_3 = 111$, \ldots, $k_{n+1} = 1\ldots1$ (with $n+1$ 1's).
Pigeon-Hole Principle (PHP)

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0's and 1's.

- Consider $n + 1$ integers $k_1 = 1$, $k_2 = 11$, $k_3 = 111$, \ldots, $k_{n+1} = 1\ldots1$ (with $n + 1$ 1's).
- When any integer is divided by n, the remainder can be either 0, 1, \ldots, $n - 1$, i.e., n choices.
Pigeon-Hole Principle (PHP)

Another simple application

For every $n \in \mathbb{Z}^+$, there exists a multiple of n whose decimal expansion only has 0’s and 1’s.

- Consider $n + 1$ integers $k_1 = 1$, $k_2 = 11$, $k_3 = 111$, \ldots, $k_{n+1} = 1 \ldots 1$ (with $n + 1$ 1’s).
- When any integer is divided by n, the remainder can be either 0, 1, \ldots, $n - 1$, i.e., n choices.
- So among the $n + 1$ integers, by PHP, at least 2 must have the same remainder.
Another simple application

For every \(n \in \mathbb{Z}^+ \), there exists a multiple of \(n \) whose decimal expansion only has 0′s and 1′s.

- Consider \(n + 1 \) integers \(k_1 = 1, k_2 = 11, k_3 = 111, \ldots, k_{n+1} = 1 \ldots 1 \) (with \(n + 1 \) 1′s).
- When any integer is divided by \(n \), the remainder can be either 0, 1, \ldots, \(n - 1 \), i.e., \(n \) choices.
- So among the \(n + 1 \) integers, by PHP, at least 2 must have the same remainder.
- That is, \(\exists i, j \), \(k_i = pn + d, k_j = qn + d \).
- But then \(|k_i - k_j| \) is a multiple of \(n \) and its decimal expansion only has 0′s and 1′s.
A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- Four boxes, one for each suit; each selected card is put in one.
- If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.
- To have ≥ 3 cards from same suit, suffices $\lceil N/4 \rceil \geq 3$.
- Thus, $N = 9$.

But can we do better?

No.
A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

▶ 4 boxes, one for each suit; each selected card is put in one.
▶ If N cards are selected then at least $\lceil N/4 \rceil$ cards.
▶ To have ≥ 3 cards from same suit, suffices $\lceil N/4 \rceil \geq 3$.
▶ Thus, $N = 9$.

But can we do better?
No.
A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?
A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards **must** be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.
A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.
- If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.
A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If \(N\) objects are placed into \(k\) boxes then there is at least one box with at least \(\lceil N/k \rceil\) objects.

Suppose not. Then each box has strictly less than \(\lfloor N/k \rfloor\) objects. Therefore, totally there can be strictly less than \(N\) objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.
- If \(N\) cards are selected then at least 1 box has \(\lceil N/4 \rceil\) cards.
- To have \(\geq 3\) cards from same suit, suffices \(\lceil N/4 \rceil \geq 3\).
A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If \(N \) objects are placed into \(k \) boxes then there is at least one box with at least \(\lceil N/k \rceil \) objects.

Suppose not. Then each box has strictly less than \(\lfloor N/k \rfloor \) objects. Therefore, totally there can be strictly less than \(N \) objects, which is a contradiction.

A simple example

How many cards **must** be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.
- If \(N \) cards are selected then at least 1 box has \(\lfloor N/4 \rfloor \) cards.
- To have \(\geq 3 \) cards from same suit, suffices \(\lfloor N/4 \rfloor \geq 3 \).
- Thus, \(N = 9 \).
A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If \(N \) objects are placed into \(k \) boxes then there is at least one box with at least \(\lceil N/k \rceil \) objects.

Suppose not. Then each box has strictly less than \(\lfloor N/k \rfloor \) objects. Therefore, totally there can be strictly less than \(N \) objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.
- If \(N \) cards are selected then at least 1 box has \(\lceil N/4 \rceil \) cards.
- To have \(\geq 3 \) cards from same suit, suffices \(\lceil N/4 \rceil \geq 3 \).
- Thus, \(N = 9 \). But can we do better?
A (slightly) more general PHP

Pigeon-Hole Principle (Variant 1)

If N objects are placed into k boxes then there is at least one box with at least $\lceil N/k \rceil$ objects.

Suppose not. Then each box has strictly less than $\lfloor N/k \rfloor$ objects. Therefore, totally there can be strictly less than N objects, which is a contradiction.

A simple example

How many cards must be selected from a pack of 52 cards so that at least three cards of the same suit are chosen?

- 4 boxes, one for each suit; each selected card is put in one.
- If N cards are selected then at least 1 box has $\lceil N/4 \rceil$ cards.
- To have ≥ 3 cards from same suit, suffices $\lceil N/4 \rceil \geq 3$.
- Thus, $N = 9$. But can we do better? No.
Another application of PHP

Question: Give a sequence of 10 real numbers with no subsequence of length 4 which is increasing or decreasing.
Another application of PHP

Question: Give a sequence of 10 real numbers with no subsequence of length 4 which is increasing or decreasing.

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length $n + 1$ which is either increasing or decreasing.
Another application of PHP

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length $n + 1$ which is either increasing or decreasing.

1. Let a_1, \ldots, a_{n^2+1} be a sequence of distinct real numbers.
Another application of PHP

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length $n + 1$ which is either increasing or decreasing.

1. Let $a_1, \ldots, a_{n^2 + 1}$ be a sequence of distinct real numbers.
2. For each $k \in \{1 \ldots n^2 + 1\}$, let (i_k, d_k) denote a pair:
 - $i_k =$ length of longest increasing subsequence starting from a_k
 - $d_k =$ length of longest decreasing subsequence starting from a_k
3. Suppose, there are no increasing/decreasing subsequences of length $n + 1$. Then $\forall k$, $i_k \leq n$ and $d_k \leq n$.
4. \therefore by PHP, $\exists \ell, m, 1 \leq \ell < m \leq n^2 + 1$ s.t. $(i_\ell, d_\ell) = (i_m, d_m)$
5. We will show that this is not possible:
 - Case 1: $a_\ell < a_m$. Then $i_m \geq i_\ell + 1$, a contradiction.
 - Case 2: $a_\ell > a_m$. Then $d_\ell \geq d_m + 1$, a contradiction.
6. All a_i's are distinct so this completes the proof.
Another application of PHP

Theorem

Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length $n + 1$ which is either increasing or decreasing.

1. Let $a_1, \ldots, a_{n^2 + 1}$ be a sequence of distinct real numbers.
2. For each $k \in \{1 \ldots n^2 + 1\}$, let (i_k, d_k) denote a pair:
 - $i_k =$ length of longest increasing subsequence starting from a_k
 - $d_k =$ length of longest decreasing subsequence starting from a_k
3. Suppose, there are no increasing/decreasing subsequences of length $n + 1$. Then $\forall k$, $i_k \leq n$ and $d_k \leq n$.
4. \therefore by PHP, $\exists \ell, m, 1 \leq \ell < m \leq n^2 + 1$ s.t. $(i_\ell, d_\ell) = (i_m, d_m)$
5. We will show that this is not possible:
 - Case 1: $a_\ell < a_m$. Then $i_m \geq i_\ell + 1$, a contradiction.
 - Case 2: $a_\ell > a_m$. Then $d_\ell \geq d_m + 1$, a contradiction.
6. All a_i’s are distinct so this completes the proof. □
Another variant of PHP

Theorem (PHP Variant 2)

Suppose there are \(n \geq 1 + r(\ell - 1) \) objects which are colored with \(r \) different colors. Then there exist \(\ell \) objects all with the same color.
Another variant of PHP

Theorem (PHP Variant 2)
Suppose there are \(n \geq 1 + r(\ell - 1) \) objects which are colored with \(r \) different colors. Then there exist \(\ell \) objects all with the same color.

Proof: (H.W)
Another variant of PHP

Theorem (PHP Variant 2)

Suppose there are $n \geq 1 + r(\ell - 1)$ objects which are colored with r different colors. Then there exist ℓ objects all with the same color.

Proof: (H.W)

- Is this coloring optimal?
Another variant of PHP

Theorem (PHP Variant 2)

Suppose there are \(n \geq 1 + r(\ell - 1) \) objects which are colored with \(r \) different colors. Then there exist \(\ell \) objects all with the same color.

Proof: (H.W)

- Is this coloring optimal?
- That is, if fewer than \(1 + r(\ell - 1) \) objects are given, is there a way of coloring them such that no \(\ell \) have the same color?
Back to the coloring game

The coloring game

- There are six points on board and two colored chalks.
The coloring game

- There are six points on board and two colored chalks.
- Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.

Lemma: Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

2-coloring of edges: coloring all edges of the graph using atmost 2 colors.

monochromatic (triangle): all edges have the same color.
Back to the coloring game

The coloring game

- There are six points on board and two colored chalks.
- Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- You lose if you are first to draw a triangle of your color.

We will now show that this is impossible. That is, Lemma Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

2-coloring of edges: coloring all edges of the graph using atmost 2 colors.

monochromatic (triangle): all edges have the same color.
The coloring game

- There are six points on board and two colored chalks.
- Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- You lose if you are first to draw a triangle of your color.
- Can you ever have a draw?

We will now show that this is impossible. That is, any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

- 2-coloring of edges: coloring all edges of the graph using at most 2 colors.
- Monochromatic (triangle): all edges have the same color.
The coloring game

- There are six points on board and two colored chalks.
- Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- You lose if you are first to draw a triangle of your color.
- Can you ever have a draw?

We will now show that this is impossible. That is,
Back to the coloring game

The coloring game

- There are six points on board and two colored chalks.
- Divide class into 2 groups. Group 1 draws white lines and Group 2 draws blue lines between points.
- You lose if you are first to draw a triangle of your color.
- Can you ever have a draw?

We will now show that this is impossible. That is,

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

- **2-coloring of edges**: coloring all edges of the graph using atmost 2 colors.
- **monochromatic (triangle)**: all edges have the same color.
Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:
Back to the coloring game

Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- Let 1, \ldots, 6 be the points, and red/blue the colors.
- Consider the edges 16, 26, 36, 46, 56.
- By PHP at least 3 of them must be same color, say 16, 26, 36 are red.
- Now there are two possibilities:
 - Either one of 12, 23, 31 is red (then we have a red triangle).
 - Else none of them are red, implies 123 is a blue triangle.

\qed
Lemma

Any 2-coloring of edges of a graph on 6 nodes has a monochromatic triangle.

Proof:

- Let 1, . . . , 6 be the points, and red/blue the colors.
- Consider the edges 16, 26, 36, 46, 56.
- By PHP at least 3 of them must be same color, say 16, 26, 36 are red.
- Now there are two possibilities:
 - Either one of 12, 23, 31 is red (then we have a red triangle).
 - Else none of them are red, implies 123 is a blue triangle.

- What if there were 5 or lesser nodes?
Two broad topics covered till date - Half-time!

- Mathematical proofs and structures
- Counting and Combinatorics
Two broad topics covered till date - Half-time!

- **Mathematical proofs and structures**
 - Propositions, proof techniques: contradiction, contrapositive
 - Induction: strong induction, well-ordering principle
 - Sets: finite and infinite sets, countable and uncountable sets
 - Functions: bijections (from e.g., \(\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \)), injections and surjections, Cantor’s diagonalization technique
 - Relations: equivalence relations and partitions; partial orders, chains, anti-chains, lattices

- **Counting and Combinatorics**
Two broad topics covered till date - Half-time!

- **Mathematical proofs and structures**
 - Propositions, proof techniques: contradiction, contrapositive
 - Induction: strong induction, well-ordering principle
 - Sets: finite and infinite sets, countable and uncountable sets
 - Functions: bijections (from e.g., \(\mathbb{N} \times \mathbb{N} \to \mathbb{N} \)), injections and surjections, Cantor’s diagonalization technique
 - Relations: equivalence relations and partitions; partial orders, chains, anti-chains, lattices

- **Counting and Combinatorics**
 - Basic counting principles, double counting
 - Binomial theorem, permutations and combinations, Estimating \(n! \)
 - Recurrence relations and generating functions
 - Principle of Inclusion-Exclusion (PIE) and its applications.
 - Pigeon-Hole Principle (PHP) and its applications.