CS 207: Discrete Structures

Lecture 21 – Counting, Combinatorics and Graph Theory
A glimpse of Ramsey Theory

Sept 19 2016
Non-trivial applications of the Pigeon-Hole Principle (PHP)
Edge coloring problems

Non-trivial applications of the Pigeon-Hole Principle (PHP)

Results we saw last class

1. Any 2-coloring of a graph on 6 nodes has either a red triangle or a blue triangle.
 ▶ 6 is the optimal such number. Thus, \(R(3, 3) = 6 \).
Edge coloring problems

Non-trivial applications of the Pigeon-Hole Principle (PHP)

Results we saw last class

1. Any 2-coloring of a graph on 6 nodes has either a red triangle or a blue triangle.
 - 6 is the optimal such number. Thus, $R(3,3) = 6$.

2. Any 2-coloring of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.
Edge coloring problems

Non-trivial applications of the Pigeon-Hole Principle (PHP)

<table>
<thead>
<tr>
<th>Results we saw last class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Any 2-coloring of a graph on 6 nodes has either a red triangle or a blue triangle.</td>
</tr>
<tr>
<td>▷ 6 is the optimal such number. Thus, $R(3, 3) = 6$.</td>
</tr>
<tr>
<td>2. Any 2-coloring of a graph on 10 nodes has either a red triangle or a blue complete graph on 4 nodes.</td>
</tr>
<tr>
<td>3. Any 2-coloring of a graph on 9 nodes has either a red triangle or a blue complete graph on 4 nodes.</td>
</tr>
<tr>
<td>▷ Is 9 the optimal such number? $R(3, 4) \leq 9$.</td>
</tr>
<tr>
<td>▷ (H.W?) Prove that $R(3, 4) = 9!$</td>
</tr>
</tbody>
</table>
Edge coloring problems

Non-trivial applications of the Pigeon-Hole Principle (PHP)

<table>
<thead>
<tr>
<th>Results we saw last class</th>
</tr>
</thead>
</table>
| 1. Any 2-coloring of a graph on 6 nodes has either a **red triangle** or a **blue triangle**.
 ▶ 6 is the optimal such number. Thus, \(R(3, 3) = 6 \).
| 2. Any 2-coloring of a graph on 10 nodes has either a **red triangle** or a **blue complete graph** on 4 nodes.
| 3. Any 2-coloring of a graph on 9 nodes has either a **red triangle** or a **blue complete graph** on 4 nodes.
 ▶ Is 9 the optimal such number? \(R(3, 4) \leq 9 \).
 ▶ (H.W?) Prove that \(R(3, 4) = 9! \)
| 4. Any 2-coloring of a graph on 18 nodes has a **monochromatic complete graph** on 4 nodes. |
Mixing counting and combinatorics with graph theory

Today’s class

Generalizing the coloring game
An introduction to Ramsey theory.
Ramsey’s theorem

Recall:

Definition

For $k, \ell \in \mathbb{N}$, $R(k, \ell)$ denotes the minimum number of nodes such that any 2-coloring of a (complete) graph on $R(k, \ell)$ nodes has

- either, a complete graph on k-nodes with all red edges
- or, a complete graph on ℓ-nodes with all blue edges
Ramsey’s theorem

Recall:

Definition

For \(k, \ell \in \mathbb{N} \), \(R(k, \ell) \) denotes the minimum number of nodes such that any 2-coloring of a (complete) graph on \(R(k, \ell) \) nodes has

- either, a complete graph on \(k \)-nodes with all red edges
- or, a complete graph on \(\ell \)-nodes with all blue edges

Ramsey’s theorem (simplified version)

For all \(k, \ell \in \mathbb{N} \), \(R(k, \ell) \) exists, i.e., it is finite.
Ramsey’s theorem

Recall:

Definition

For \(k, \ell \in \mathbb{N} \), \(R(k, \ell) \) denotes the minimum number of nodes such that any 2-coloring of a (complete) graph on \(R(k, \ell) \) nodes has

- either, a complete graph on \(k \)-nodes with all red edges
- or, a complete graph on \(\ell \)-nodes with all blue edges

Ramsey’s theorem (simplified version)

For all \(k, \ell \in \mathbb{N} \), \(R(k, \ell) \) exists, i.e., it is finite. In fact,

\[
R(k, \ell) \leq \binom{k + \ell - 2}{k - 1}
\]
Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain some regular sub-part!

E.g., any 2-coloring on a complete graph of 10 nodes contains either a complete graph of 3 nodes of one color or a complete graph of 4 nodes of the other color.
Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain some regular sub-part!

E.g., any 2-coloring on a complete graph of 10 nodes contains either a complete graph of 3 nodes of one color or a complete graph of 4 nodes of the other color.

▶ Suppose in a group of people any two are friends or enemies.
Ramsey theory: A search for order in disorder!

Every structure no matter how disordered must contain some regular sub-part!

E.g., any 2-coloring on a complete graph of 10 nodes contains either a complete graph of 3 nodes of one color or a complete graph of 4 nodes of the other color.

- Suppose in a group of people any two are friends or enemies.
- In any set of 10 people there must be either 3 mutual friends or 4 mutual enemies.
Proof of Ramsey’s theorem

- What is $R(n, 2) = R(2, n)$?
Proof of Ramsey’s theorem

- What is $R(n, 2) = R(2, n)$?
- What is $R(1, 1)$? $R(n, 1) = R(1, n)$?
Proof of Ramsey’s theorem

- What is $R(n, 2) = R(2, n)$?
- What is $R(1, 1)$? $R(n, 1) = R(1, n)$?

For all integers $k, \ell \geq 2$, $R(k, \ell)$ is finite.
Proof of Ramsey’s theorem

- What is $R(n, 2) = R(2, n)$?
- What is $R(1, 1)$? $R(n, 1) = R(1, n)$?

For all integers $k, \ell \geq 2$, $R(k, \ell)$ is finite.

Proof:
- By strong induction on $k + \ell$.
Proof of Ramsey’s theorem

- What is $R(n, 2) = R(2, n)$?
- What is $R(1, 1)$? $R(n, 1) = R(1, n)$?

For all integers $k, \ell \geq 2$, $R(k, \ell)$ is finite.

Proof:
- By strong induction on $k + \ell$.
- Base case: $R(2, 2) = 2$.

Proof of Ramsey’s theorem

- What is $R(n, 2) = R(2, n)$?
- What is $R(1, 1)$? $R(n, 1) = R(1, n)$?

For all integers $k, \ell \geq 2$, $R(k, \ell)$ is finite.

Proof:

- By strong induction on $k + \ell$.
- Base case: $R(2, 2) = 2$.
- Suppose it is true for all k, ℓ such that $k + \ell < N$. We will show that $R(k, \ell)$ is finite by showing

\[R(k, \ell) \leq R(k - 1, \ell) + R(k, \ell - 1) \]

where $R(k - 1, \ell)$ and $R(k, \ell - 1)$ exist by induction hypothesis since $k + \ell - 1 < N$.
Proof of Ramsey’s theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell - 1)$ exist. Then,

Claim: $R(k, \ell) \leq R(k-1, \ell) + R(k, \ell - 1)$
Proof of Ramsey’s theorem contd.

By ind hyp assume that $R(k - 1, \ell)$ and $R(k, \ell - 1)$ exist. Then,

Claim: $R(k, \ell) \leq R(k - 1, \ell) + R(k, \ell - 1)$

i.e., given a 2-colored complete graph with $R(k - 1, \ell) + R(k, \ell - 1)$ nodes, it has either a complete red graph with k nodes or a complete blue graph with ℓ nodes.
Proof of Ramsey’s theorem contd.

By ind hyp assume that $R(k - 1, \ell)$ and $R(k, \ell - 1)$ exist. Then,

Claim: $R(k, \ell) \leq R(k - 1, \ell) + R(k, \ell - 1)$

Consider complete graph with $R(k - 1, \ell) + R(k, \ell - 1)$ nodes.
Proof of Ramsey’s theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell - 1)$ exist. Then,

Claim: $R(k, \ell) \leq R(k-1, \ell) + R(k, \ell - 1)$

Consider complete graph with $R(k-1, \ell) + R(k, \ell - 1)$ nodes.
Proof of Ramsey’s theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

Claim: $R(k, \ell) \leq R(k-1, \ell) + R(k, \ell-1)$

Consider complete graph with $R(k-1, \ell) + R(k, \ell-1)$ nodes.

Clearly $M + N = R(k-1, \ell) + R(k, \ell-1) - 1$.
Proof of Ramsey’s theorem contd.

By ind hyp assume that \(R(k - 1, \ell) \) and \(R(k, \ell - 1) \) exist. Then,

Claim: \(R(k, \ell) \leq R(k - 1, \ell) + R(k, \ell - 1) \)

Consider complete graph with \(R(k - 1, \ell) + R(k, \ell - 1) \) nodes.

\[
\begin{align*}
R(k - 1, \ell) + R(k, \ell - 1) - 1
\end{align*}
\]

- Clearly \(M + N = R(k - 1, \ell) + R(k, \ell - 1) - 1 \).
- By PHP, either \(M \geq R(k - 1, \ell) \) or \(N \geq R(k, \ell - 1) \).
Proof of Ramsey’s theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

Claim: $R(k, \ell) \leq R(k-1, \ell) + R(k, \ell-1)$

Consider complete graph with $R(k-1, \ell) + R(k, \ell-1)$ nodes.

- **Case 1:** $M \geq R(k-1, \ell)$.
Proof of Ramsey’s theorem contd.

By ind hyp assume that $R(k - 1, \ell)$ and $R(k, \ell - 1)$ exist. Then,

Claim: $R(k, \ell) \leq R(k - 1, \ell) + R(k, \ell - 1)$

Consider complete graph with $R(k - 1, \ell) + R(k, \ell - 1)$ nodes.

- Case 1: $M \geq R(k - 1, \ell)$. Either complete blue graph on ℓ nodes
Proof of Ramsey’s theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell-1)$ exist. Then,

Claim: $R(k, \ell) \leq R(k-1, \ell) + R(k, \ell-1)$

Consider complete graph with $R(k-1, \ell) + R(k, \ell-1)$ nodes.

▶ Case 1: $M \geq R(k-1, \ell)$. Either complete blue graph on ℓ nodes or complete red graph on $k-1$ nodes + x
Proof of Ramsey’s theorem contd.

By ind hyp assume that $R(k-1, \ell)$ and $R(k, \ell - 1)$ exist. Then,

Claim: $R(k, \ell) \leq R(k-1, \ell) + R(k, \ell - 1)$

Consider complete graph with $R(k-1, \ell) + R(k, \ell - 1)$ nodes.

- **Case 1:** $M \geq R(k-1, \ell)$. ✓
- **Case 2:** $N \geq R(k, \ell - 1)$ leads to same argument. (Do it!) ✓
Proof of Ramsey’s theorem contd.

By ind hyp assume that $R(k - 1, \ell)$ and $R(k, \ell - 1)$ exist. Then,

Claim: $R(k, \ell) \leq R(k - 1, \ell) + R(k, \ell - 1)$

Consider complete graph with $R(k - 1, \ell) + R(k, \ell - 1)$ nodes.

Thus in all cases, we have $R(k, \ell) \leq R(k - 1, \ell) + R(k, \ell - 1)$. \qed
Proof of Ramsey’s theorem

Ramsey’s theorem (simplified version)

For all $k, \ell \geq 2$, $R(k, \ell)$ exists, i.e., it is finite. Further,

$$R(k, \ell) \leq \binom{k + \ell - 2}{k - 1}$$

Proof:
Proof of Ramsey’s theorem

Ramsey’s theorem (simplified version)

For all \(k, \ell \geq 2 \), \(R(k, \ell) \) exists, i.e., it is finite. Further,

\[
R(k, \ell) \leq \binom{k + \ell - 2}{k - 1}
\]

Proof: Now, this should be trivial!
Proof of Ramsey’s theorem

Ramsey’s theorem (simplified version)

For all $k, \ell \geq 2$, $R(k, \ell)$ exists, i.e., it is finite. Further,

$$R(k, \ell) \leq \binom{k + \ell - 2}{k - 1}$$

Proof:

- By induction on $k + \ell$ as before.
Proof of Ramsey's theorem

Ramsey's theorem (simplified version)

For all \(k, \ell \geq 2 \), \(R(k, \ell) \) exists, i.e., it is finite. Further,

\[
R(k, \ell) \leq \binom{k + \ell - 2}{k - 1}
\]

Proof:

- By induction on \(k + \ell \) as before.
- Base case for \(k = \ell = 2 \) is done.
Proof of Ramsey’s theorem

Ramsey’s theorem (simplified version)

For all \(k, \ell \geq 2 \), \(R(k, \ell) \) exists, i.e., it is finite. Further,

\[
R(k, \ell) \leq \binom{k + \ell - 2}{k - 1}
\]

Proof:

- By induction on \(k + \ell \) as before.
- Base case for \(k = \ell = 2 \) is done.
- By what we just showed and induction hypothesis we have:

\[
R(k, \ell) \leq R(k - 1, \ell) + R(k, \ell - 1) \\
\leq \binom{k + \ell - 3}{k - 2} + \binom{k + \ell - 3}{k - 1} = \binom{k + \ell - 2}{k - 1}
\]
Ramsey theory

Some interesting facts

- The general Ramsey theorem extends this to any finite number of colors (not just 2).
- Several applications, vast research area!
- Exact values are known only for 6 or so entries: \(R(3, 3) = 6, \ R(3, 4) = 9, \ R(4, 4) = 18, \ldots \ R(3, 8) = 28 \) or 29...
- Only bounds are known for rest. (see wiki on this...)
Ramsey theory

Some interesting facts

▶ The general Ramsey theorem extends this to any finite number of colors (not just 2).
▶ Several applications, vast research area!
▶ Exact values are known only for 6 or so entries: $R(3, 3) = 6$, $R(3, 4) = 9$, $R(4, 4) = 18, \ldots$, $R(3, 8) = 28$ or 29...
▶ Only bounds are known for rest. (see wiki on this...)
▶ What about lower bounds?
Ramsey theory

Some interesting facts

- The general Ramsey theorem extends this to any finite number of colors (not just 2).
- Several applications, vast research area!
- Exact values are known only for 6 or so entries: $R(3, 3) = 6$, $R(3, 4) = 9$, $R(4, 4) = 18$, ..., $R(3, 8) = 28$ or 29...
- Only bounds are known for rest. (see wiki on this...)
- What about lower bounds?

So how hard is it? Paul Erdös is supposed to have said:
Ramsey theory

Some interesting facts

- The general Ramsey theorem extends this to any finite number of colors (not just 2).
- Several applications, vast research area!
- Exact values are known only for 6 or so entries: $R(3, 3) = 6$, $R(3, 4) = 9$, $R(4, 4) = 18$, ..., $R(3, 8) = 28$ or 29...
- Only bounds are known for rest. (see wiki on this...)
- What about lower bounds?

So how hard is it? Paul Erdős is supposed to have said:

Suppose an evil alien would tell mankind “Either you tell me the value of $R(5, 5)$ or I will exterminate the human race.” … It would be best to try to compute it, both by mathematics and with a computer. If he would ask for the value of $R(6, 6)$, the best thing would be to destroy him before he destroys us, because we couldn’t.